Abstract

Precise porosity control is highly desirable for improving the electrochemical performance of solid oxide fuel cells (SOFCs). Freeze casting is an established method for enabling high bulk porosity in structures and controlling pore orientation. In this study, freeze casting was used to fabricate tubular, anode-supported SOFCs with aligned and varying amounts of porosity by controlling the solids/water ratio in different casting slurries. SOFCs were prepared with a Ni/yttria and scandia stabilized zirconia (ScYSZ) anode support (AS), an anode functional layer (AFL), a ScYSZ electrolyte, a lanthanum strontium manganite (LSM)/ScYSZ cathode interlayer (CIL), and an LSM cathode. The permeability of the anode support was found to increase from 1.4 × 10−2 to 1.8 × 10−2 m2 as porosity was increased from 57 to 64 vol%, while the total cell resistance decreased by 35% from 0.93 to 0.60 Ohm cm2. When evaluated with 30 vol% H2 as the fuel at 800 °C, the decrease of concentration polarization enabled an increase in electrochemical performance by 42% from 0.35 to 0.50 W/cm2 as the porosity in the anode support was increased. Mechanical strength characterization using a three-point method showed there is a practical upper limit of the amount of porosity that can be designed into the anode support. This work paves a way for controlling porosity by freeze casting and understanding the correlation between porosity and concentration polarization losses in SOFCs.

References

References
1.
Wachsman
,
E. D.
, and
Lee
,
K. T.
,
2011
, “
Lowering the Temperature of Solid Oxide Fuel Cells
,”
Science
,
334
(
6058
), pp.
935
939
. 10.1126/science.1204090
2.
Hauth
,
M.
,
Seidl
,
M.
,
Postl
,
A.
,
Sallai
,
C.
,
Soukup
,
N.
,
Albert
,
J.
,
Weinlander
,
C.
,
Rieberer
,
R.
, and
Hochenauer
,
C.
,
2017
, “Development of a Highly Flexible SOFC CCHP System Towards Demand-Oriented Power Generation From Renewable Fuels,”
Solid Oxide Fuel Cells 15
, Vol.
78
,
S. C.
Singhal
, and
T.
Kawada
, eds.,
Electrochemical Soc Inc.
,
Pennington
, pp.
155
170
.
3.
McPhail
,
S. J.
, and
Bruno Conti
,
J. K.
,
2017
,
The Yellow Pages of SOFC Technology International Status of SOFC Deployment 2017
,
VTT Technical Research Centre of Finland Ltd.
,
Finland
, Vol.
32
, p.
47
.
4.
Krist
,
K.
,
Gleason
,
K. J.
, and
Wright
,
J. D.
,
1999
,
SOFC-Based Residential Cogeneration Systems
,
Electrochemical Society Inc.
,
Pennington
, Vol.
99
, pp.
107
115
.
5.
Huang
,
W. H.
,
Finnerty
,
C.
,
Sharp
,
R.
,
Wang
,
K.
, and
Balili
,
B.
,
2017
, “
High-Performance 3D Printed Microtubular Solid Oxide Fuel Cells
,”
Adv. Mater. Technol.
,
2
(
4
), p.
5
. 10.1002/admt.201600258
6.
Lawlor
,
V.
,
Griesser
,
S.
,
Buchinger
,
G.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Meissner
,
D.
,
2009
, “
Review of the Micro-Tubular Solid Oxide Fuel Cell Part I. Stack Design Issues and Research Activities
,”
J. Power Sources
,
193
(
2
), pp.
387
399
. 10.1016/j.jpowsour.2009.02.085
7.
Mehran
,
M. T.
,
Park
,
S. W.
,
Kim
,
J.
,
Hong
,
J. E.
,
Lee
,
S. B.
,
Park
,
S. J.
,
Song
,
R. H.
,
Shim
,
J. H.
, and
Lim
,
T. H.
,
2019
, “
Performance Characteristics of a Robust and Compact Propane-Fueled 150 W-Class SOFC Power-Generation System
,”
Int. J. Hydrogen Energy
,
44
(
12
), pp.
6160
6171
. 10.1016/j.ijhydene.2019.01.076
8.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
,
2005
, “
Design and Fabrication of a 100 W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
,
145
(
2
), pp.
428
434
. 10.1016/j.jpowsour.2005.01.079
9.
Iwai
,
H.
,
Shikazono
,
N.
,
Matsui
,
T.
,
Teshima
,
H.
,
Kishimoto
,
M.
,
Kishida
,
R.
,
Hayashi
,
D.
,
Matsuzaki
,
K.
,
Kanno
,
D.
,
Saito
,
M.
,
Muroyama
,
H.
,
Eguchi
,
K.
,
Kasagi
,
N.
, and
Yoshida
,
H.
,
2010
, “
Quantification of SOFC Anode Microstructure Based on Dual Beam FIB-SEM Technique
,”
J. Power Sources
,
195
(
4
), pp.
955
961
. 10.1016/j.jpowsour.2009.09.005
10.
Izzo
,
J. R.
,
Joshi
,
A. S.
,
Grew
,
K. N.
,
Chiu
,
W. K. S.
,
Tkachuk
,
A.
,
Wang
,
S. H.
, and
Yun
,
W. B.
,
2008
, “
Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-Ray Computed Tomography at Sub-50 nm Resolution
,”
J. Electrochem. Soc.
,
155
(
5
), pp.
B504
B508
. 10.1149/1.2895067
11.
Lu
,
X. K.
,
Li
,
T.
,
Bertei
,
A.
,
Cho
,
J. I. S.
,
Heenan
,
T. M. M.
,
Rabuni
,
M. F.
,
Li
,
K.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2018
, “
The Application of Hierarchical Structures in Energy Devices: New Insights Into the Design of Solid Oxide Fuel Cells With Enhanced Mass Transport
,”
Energy Environ. Sci.
,
11
(
9
), pp.
2390
2403
. 10.1039/C8EE01064A
12.
Shri Prakash
,
B.
,
Senthil Kumar
,
S.
, and
Aruna
,
S. T.
,
2014
, “
Properties and Development of Ni/YSZ as an Anode Material in Solid Oxide Fuel Cell: A Review
,”
Renew. Sust. Energ. Rev.
,
36
, pp.
149
179
. 10.1016/j.rser.2014.04.043
13.
Fergus
,
J. W.
,
2006
, “
Electrolytes for Solid Oxide Fuel Cells
,”
J. Power Sources
,
162
(
1
), pp.
30
40
. 10.1016/j.jpowsour.2006.06.062
14.
Haslam
,
J. J.
,
Pham
,
A. Q.
,
Chung
,
B. W.
,
DiCarlo
,
J. F.
, and
Glass
,
R. S.
,
2005
, “
Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
513
518
. 10.1111/j.1551-2916.2005.00097.x
15.
Luo
,
L. H.
,
Hou
,
B. X.
,
Wu
,
Y. F.
,
Wang
,
C. C.
,
Cheng
,
L.
,
Shi
,
J. J.
, and
Liao
,
H. M.
,
2011
, “
Effect of Graphite Contents on the Electrochemical Performance of SOFC Prepared by Tape Casting
,”
Rare Metal Mat. Eng.
,
40
, pp.
306
309
.
16.
Sarikaya
,
A.
,
Petrovsky
,
V.
, and
Dogan
,
F.
,
2013
, “
Development of the Anode Pore Structure and its Effects on the Performance of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
24
), pp.
10081
10091
. 10.1016/j.ijhydene.2013.05.160
17.
Sumi
,
H.
,
Yamaguchi
,
T.
,
Hamamoto
,
K.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Menon
,
M.
,
2013
, “
Effects of Anode Microstructure on Mechanical and Electrochemical Properties for Anode-Supported Microtubular Solid Oxide Fuel Cells
,”
J. Am. Ceram. Soc.
,
96
(
11
), pp.
3584
3588
. 10.1111/jace.12603
18.
Suzuki
,
T.
,
Hasan
,
Z.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
,
2009
, “
Impact of Anode Microstructure on Solid Oxide Fuel Cells
,”
Science
,
325
(
5942
), pp.
852
855
. 10.1126/science.1176404
19.
Jamil
,
S. M.
,
Othman
,
M. H. D.
,
Rahman
,
M. A.
,
Jaafar
,
J.
,
Ismail
,
A. F.
, and
Li
,
K.
,
2015
, “
Recent Fabrication Techniques for Micro-Tubular Solid Oxide Fuel Cell Support: A Review
,”
J. Eur. Ceram. Soc.
,
35
(
1
), pp.
1
22
. 10.1016/j.jeurceramsoc.2014.08.034
20.
Chen
,
Y.
,
Bunch
,
J.
,
Li
,
T. S.
,
Mao
,
Z. P.
, and
Chen
,
F. L.
,
2012
, “
Novel Functionally Graded Acicular Electrode for Solid Oxide Cells Fabricated by the Freeze-Tape-Casting Process
,”
J. Power Sources
,
213
, pp.
93
99
. 10.1016/j.jpowsour.2012.03.109
21.
Koh
,
Y. H.
,
Sun
,
J. J.
, and
Kim
,
H. E.
,
2007
, “
Freeze Casting of Porous Ni-YSZ Cermets
,”
Mater. Lett.
,
61
(
6
), pp.
1283
1287
. 10.1016/j.matlet.2006.07.009
22.
Lichtner
,
A. Z.
,
Jauffres
,
D.
,
Martin
,
C. L.
,
Bordia
,
R. K.
, and
Kim
,
H.-E.
,
2013
, “
Processing of Hierarchical and Anisotropic Porosity LSM-YSZ Composites
,”
J. Am. Ceram. Soc.
,
96
(
9
), pp.
2745
2753
. 10.1111/jace.12478
23.
Lichtner
,
A. Z.
,
Jauffres
,
D.
,
Roussel
,
D.
,
Charlot
,
F.
,
Martin
,
C. L.
, and
Bordia
,
R. K.
,
2015
, “
Dispersion, Connectivity and Tortuosity of Hierarchical Porosity Composite SOFC Cathodes Prepared by Freeze-Casting
,”
J. Eur. Ceram. Soc.
,
35
(
2
), pp.
585
595
. 10.1016/j.jeurceramsoc.2014.09.030
24.
Miller
,
S.
,
Xiao
,
X. H.
,
Setlock
,
J.
,
Farmer
,
S.
, and
Faber
,
K.
,
2018
, “
Freeze-Cast Yttria-Stabilized Zirconia Pore Networks: Effects of Alcohol Additives
,”
Int. J. Appl. Ceram. Technol.
,
15
(
2
), pp.
296
306
. 10.1111/ijac.12794
25.
Soltani
,
N.
,
Martinez-Bautista
,
R.
,
Bahrami
,
A.
,
Arcos
,
L.
,
Cassir
,
M.
, and
Chávez Carvayar
,
J.
,
2018
, “
Fabrication of Aligned Porous LaNi0.6Fe0.4O3 Perovskite by Water Based Freeze Casting
,”
Chem. Phys. Lett.
,
700
, pp.
138
144
. 10.1016/j.cplett.2018.04.026
26.
Moon
,
J. W.
,
Hwang
,
H. J.
,
Awano
,
M.
, and
Maeda
,
K.
,
2003
, “
Preparation of NiO-YSZ Tubular Support With Radially Aligned Pore Channels
,”
Mater. Lett.
,
57
(
8
), pp.
1428
1434
. 10.1016/S0167-577X(02)01002-9
27.
Du
,
Y.
,
Persky
,
J.
,
Zhao
,
K.
,
Ilkhani
,
H.
,
Woodson
,
T.
,
Emley
,
B.
, and
Hedayat
,
N.
,
2017
, “Fabrication and Electrochemical Characterization of Freeze-Cast Tubular Solid Oxide Fuel Cells,”
Solid Oxide Fuel Cells 15
,
78
,
S. C.
Singhal
, and
T.
Kawada
, eds.,
Electrochemical Soc Inc.
,
Pennington
, pp.
1885
1895
.
28.
Panthi
,
D.
,
Hedayat
,
N.
,
Woodson
,
T.
,
Emley
,
B. J.
, and
Du
,
Y.
,
2019
, “
Tubular Solid Oxide Fuel Cells Fabricated by a Novel Freeze Casting Method
,”
J. Am. Ceram. Soc.
,
103
(
2
), pp.
878
888
.
29.
Lankin
,
M.
,
Du
,
Y.
, and
Finnerty
,
C.
,
2011
, “
A Review of the Implications of Silica in Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
5
), p.
7
. 10.1115/1.4003980
30.
Cable
,
T. L.
, and
Sofie
,
S. W.
,
2007
, “
A Symmetrical, Planar SOFC Design for NASN’s High Specific Power Density Requirements
,”
J. Power Sources
,
174
(
1
), pp.
221
227
. 10.1016/j.jpowsour.2007.08.110
31.
Sofie
,
S. W.
,
2007
, “
Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze-Tape-Casting Process
,”
J. Am. Ceram. Soc.
,
90
(
7
), pp.
2024
2031
. 10.1111/j.1551-2916.2007.01720.x
32.
Seub
,
J.
,
Leloup
,
J.
,
Richaud
,
S.
,
Deville
,
S.
,
Guizard
,
C.
, and
Stevenson
,
A. J.
,
2017
, “
Fabrication of Ice-Templated Tubes by Rotational Freezing: Microstructure, Strength, and Permeability
,”
J. Eur. Ceram. Soc.
,
37
(
6
), pp.
2423
2429
. 10.1016/j.jeurceramsoc.2017.01.014
33.
Gaudillere
,
C.
, and
Serra
,
J. M.
,
2016
, “
Freeze-Casting: Fabrication of Highly Porous and Hierarchical Ceramic Supports for Energy Applications
,”
Bol. Soc. Esp. Ceram. Vidr.
,
55
(
2
), pp.
45
54
. 10.1016/j.bsecv.2016.02.002
34.
Liu
,
R. P.
,
Xu
,
T. T.
, and
Wang
,
C. A.
,
2016
, “
A Review of Fabrication Strategies and Applications of Porous Ceramics Prepared by Freeze-Casting Method
,”
Ceram. Int.
,
42
(
2
), pp.
2907
2925
. 10.1016/j.ceramint.2015.10.148
35.
Kupecki
,
J.
,
Kluczowski
,
R.
,
Papurello
,
D.
,
Lanzini
,
A.
,
Kawalec
,
M.
,
Krauz
,
M.
, and
Santarelli
,
M.
,
2019
, “
Characterization of a Circular 80%mm Anode Supported Solid Oxide Fuel Cell (AS-SOFC) With Anode Support Produced Using High-Pressure Injection Molding (HPIM)
,”
Int. J. Hydrogen Energy
,
44
(
35
), pp.
19405
19411
. 10.1016/j.ijhydene.2018.02.143
36.
Mukhopadhyay
,
M.
,
Mukhopadhyay
,
J.
, and
Basu
,
R. N.
,
2013
, “
Functional Anode Materials for Solid Oxide Fuel Cell—A Review
,”
Trans. Indian Ceram. Soc.
,
72
(
3
), pp.
145
168
. 10.1080/0371750X.2013.851625
37.
Yan
,
Z.
,
He
,
A.
,
Hara
,
S.
, and
Shikazono
,
N.
,
2019
, “
Modeling of Solid Oxide Fuel Cell (SOFC) Electrodes From Fabrication to Operation: Correlations Between Microstructures and Electrochemical Performances
,”
Energy Conv. Manag.
,
190
, pp.
1
13
. 10.1016/j.enconman.2019.04.002
38.
Chen
,
X. W.
, and
Hong
,
L.
,
2010
, “
An In Situ Approach to Create Porous Ceramic Membrane: Polymerization of Acrylamide in a Confined Environment
,”
J. Am. Ceram. Soc.
,
93
(
1
), pp.
96
103
. 10.1111/j.1551-2916.2009.03373.x
39.
Tjaden
,
B.
,
Lane
,
J.
,
Withers
,
P. J.
,
Bradley
,
R. S.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2016
, “
The Application of 3D Imaging Techniques, Simulation and Diffusion Experiments to Explore Transport Properties in Porous Oxygen Transport Membrane Support Materials
,”
Solid State Ion.
,
288
, pp.
315
321
. 10.1016/j.ssi.2016.01.030
40.
Barfod
,
R.
,
Mogensen
,
M.
,
Klemenso
,
T.
,
Hagen
,
A.
,
Liu
,
Y.-L.
, and
Vang Hendriksen
,
P.
,
2007
, “
Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
154
(
4
), pp.
B371
B378
. 10.1149/1.2433311
41.
Metzger
,
P.
,
Friedrich
,
K.
,
Muller-Steinhagen
,
H.
, and
Schiller
,
G.
,
2006
, “
SOFC Characteristics Along the Flow Path
,”
Solid State Ion.
,
177
(
19–25
), pp.
2045
2051
. 10.1016/j.ssi.2006.06.019
42.
Shimada
,
H.
,
Suzuki
,
T.
,
Yamaguchi
,
T.
,
Sumi
,
H.
,
Hamamoto
,
K.
, and
Fujishiro
,
Y.
,
2016
, “
Challenge for Lowering Concentration Polarization in Solid Oxide Fuel Cells
,”
J. Power Sources
,
302
, pp.
53
60
. 10.1016/j.jpowsour.2015.10.024
43.
Liu
,
R.
,
Cai
,
G.
,
Li
,
J.
,
Zhao
,
C.
,
Wang
,
S.
,
Wen
,
T.
, and
Wen
,
Z.
,
2010
, “
Scandia-Stabilized Zirconia-Impregnated (La, Sr)MnO3 Cathode for Tubular Solid Oxide Fuel Cells
,”
J. Solid State Electrochem.
,
14
(
10
), pp.
1923
1928
. 10.1007/s10008-010-1029-5
44.
Panthi
,
D.
,
Choi
,
B.
, and
Tsutsumi
,
A.
,
2015
, “
Fabrication and Evaluation of a Micro-Tubular Solid Oxide Fuel Cell With an Inert Support Using Scandia-Stabilized Zirconia Electrolyte
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
F1555
F1560
. 10.1149/2.1031514jes
45.
Sholklapper
,
T. Z.
,
Radmilovic
,
V.
,
Jacobson
,
C. P.
,
Visco
,
S. J.
, and
De Jonghe
,
L. C.
,
2006
, “
Synthesis and Stability of a Nanoparticle-Infiltrated Solid Oxide Fuel Cell Electrode
,”
Electrochem. Solid St.
,
10
(
4
), pp.
B74
. 10.1149/1.2434203
46.
Yuan
,
C.
,
Ye
,
X.
,
Chen
,
Y.
,
Chen
,
T.
,
Liu
,
M.
,
Li
,
J.
,
Zhan
,
Z.
, and
Wang
,
S.
,
2014
, “
Fabrication of Composite Cathode by a New Process for Anode-Supported Tubular Solid Oxide Fuel Cells
,”
Electrochim. Acta
,
149
, pp.
212
217
. 10.1016/j.electacta.2014.10.068
47.
Hsieh
,
W.-S.
,
Lin
,
P.
, and
Wang
,
S.-F.
,
2013
, “
Fabrication of Electrolyte Supported Micro-Tubular SOFCs Using Extrusion and Dip-Coating
,”
Int. J. Hydrogen Energy
,
38
(
6
), pp.
2859
2867
. 10.1016/j.ijhydene.2012.12.056
48.
Morales
,
M.
, and
Laguna-Bercero
,
M. A.
,
2017
, “
Microtubular Solid Oxide Fuel Cells Fabricated by Gel-Casting: The Role of Supporting Microstructure on the Mechanical Properties
,”
RSC Adv.
,
7
(
29
), pp.
17620
17628
. 10.1039/C7RA01259D
49.
Du
,
Y.
, and
Sammes
,
N. M.
,
2004
, “
Fabrication and Properties of Anode-Supported Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
136
(
1
), pp.
66
71
. 10.1016/j.jpowsour.2004.05.028
50.
Mehran
,
M. T.
,
Khan
,
M. Z.
,
Lim
,
T. H.
,
Lee
,
S. B.
, and
Song
,
R. H.
,
2018
, “
Effect of Nano-Al2O3 Addition on Mechanical Durability of Nickel-Yttria Stabilized Zirconia Anode Support of Solid Oxide Fuel Cells
,”
Ceram. Int.
,
44
(
12
), pp.
14824
14833
. 10.1016/j.ceramint.2018.05.114
51.
Driscoll
,
D. R.
,
Tokmakian
,
B. W.
,
Johnson
,
N. P.
,
Hunt
,
C. D.
, and
Sofie
,
S. W.
,
2017
, “
Catalyst Enhancing Aluminum Titanate for Increasing Strength of Nickel-Zirconia Cermets
,”
Mater. Lett.
,
209
, pp.
307
310
. 10.1016/j.matlet.2017.08.035
52.
Wang
,
Y.
,
Walter
,
M. E.
,
Sabolsky
,
K.
, and
Seabaugh
,
M. M.
,
2006
, “
Effects of Powder Sizes and Reduction Parameters on the Strength of Ni-YSZ Anodes
,”
Solid State Ion.
,
177
(
17–18
), pp.
1517
1527
. 10.1016/j.ssi.2006.07.010
You do not currently have access to this content.