Abstract

Macrohomogeneous battery models are widely used to predict battery performance, necessarily relying on effective electrode properties, such as specific surface area, tortuosity, and electrical conductivity. While these properties are typically estimated using ideal effective medium theories, in practice they exhibit highly non-ideal behaviors arising from their complex mesostructures. In this paper, we computationally reconstruct electrodes from X-ray computed tomography of 16 nickel–manganese–cobalt-oxide electrodes, manufactured using various material recipes and calendering pressures. Due to imaging limitations, a synthetic conductive binder domain (CBD) consisting of binder and conductive carbon is added to the reconstructions using a binder bridge algorithm. Reconstructed particle surface areas are significantly smaller than standard approximations predicted, as the majority of the particle surface area is covered by CBD, affecting electrochemical reaction availability. Finite element effective property simulations are performed on 320 large electrode subdomains to analyze trends and heterogeneity across the electrodes. Significant anisotropy of up to 27% in tortuosity and 47% in effective conductivity is observed. Electrical conductivity increases up to 7.5× with particle lithiation. We compare the results to traditional Bruggeman approximations and offer improved alternatives for use in cell-scale modeling, with Bruggeman exponents ranging from 1.62 to 1.72 rather than the theoretical value of 1.5. We also conclude that the CBD phase alone, rather than the entire solid phase, should be used to estimate effective electronic conductivity. This study provides insight into mesoscale transport phenomena and results in improved effective property approximations founded on realistic, image-based morphologies.

References

References
1.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
. 10.1149/1.2221597
2.
Allu
,
S.
,
Kalnaus
,
S.
,
Elwasif
,
W.
,
Simunovic
,
S.
,
Turner
,
J. A.
, and
Pannala
,
S.
,
2014
, “
A New Open Computational Framework for Highly-Resolved Coupled Three-Dimensional Multiphysics Simulations of Li-Ion Cells
,”
J. Power Sources
,
246
, pp.
876
886
. 10.1016/j.jpowsour.2013.08.040
3.
Bruggeman
,
V. D.
,
1935
, “
Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen
,”
Annalen der Physik
,
416
(
7
), pp.
636
664
. 10.1002/andp.19354160705
4.
Thorat
,
I. V.
,
Stephenson
,
D. E.
,
Zacharias
,
N. A.
,
Zaghib
,
K.
,
Harb
,
J. N.
, and
Wheeler
,
D. R.
,
2009
, “
Quantifying Tortuosity in Porous Li-Ion Battery Materials
,”
J. Power Sources
,
188
(
2
), pp.
592
600
. 10.1016/j.jpowsour.2008.12.032
5.
Stephenson
,
D. E.
,
Walker
,
B. C.
,
Skelton
,
C. B.
,
Gorzkowski
,
E. P.
,
Rowenhorst
,
D. J.
, and
Wheeler
,
D. R.
,
2011
, “
Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
158
(
7
), pp.
A781
A789
. 10.1149/1.3579996
6.
Peterson
,
S. W.
, and
Wheeler
,
D. R.
,
2014
, “
Direct Measurements of Effective Electronic Transport in Porous Li-Ion Electrodes
,”
J. Electrochem. Soc.
,
161
(
14
), pp.
A2175
A2181
. 10.1149/2.0661414jes
7.
Amin
,
R.
, and
Chiang
,
Y.-M.
,
2016
, “
Characterization of Electronic and Ionic Transport in Li1−xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1−xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
A1512
A1517
. 10.1149/2.0131608jes
8.
Landesfeind
,
J.
,
Ebner
,
M.
,
Eldiven
,
A.
,
Wood
,
V.
, and
Gasteiger
,
H. A.
,
2018
, “
Tortuosity of Battery Electrodes: Validation of Impedance-Derived Values and Critical Comparison With 3D Tomography
,”
J. Electrochem. Soc.
,
165
(
3
), pp.
A469
A476
. 10.1149/2.0231803jes
9.
Usseglio-Viretta
,
F. L. E.
,
Colclasure
,
A.
,
Mistry
,
A. N.
,
Claver
,
K. P. Y.
,
Pouraghajan
,
F.
,
Finegan
,
D. P.
,
Heenan
,
T. M. M.
,
Abraham
,
D.
,
Mukherjee
,
P. P.
,
Wheeler
,
D.
,
Shearing
,
P.
,
Cooper
,
S. J.
, and
Smith
,
K.
,
2018
, “
Resolving the Discrepancy in Tortuosity Factor Estimation for Li-Ion Battery Electrodes Through Micro-Macro Modeling and Experiment
,”
J. Electrochem. Soc.
,
165
(
14
), pp.
A3403
A3426
. 10.1149/2.0731814jes
10.
Shearing
,
P. R.
,
Brandon
,
N. P.
,
Gleb
,
J.
,
Bradly
,
R.
,
Withers
,
P. J.
,
Marquis
,
A. J.
,
Cooper
,
S.
, and
Harris
,
S. J.
,
2012
, “
Multi Length Scale Microstructural Investigations of a Commerically Available Li-Ion Battery Electrode
,”
J. Electrochem. Soc.
,
159
(
7
), pp.
A1023
A1027
. 10.1149/2.053207jes
11.
Hutzenlaub
,
T.
,
Thiele
,
S.
,
Zengerle
,
R.
, and
Ziegler
,
C.
,
2012
, “
Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode
,”
Electrochem. Solid-State Lett.
,
15
(
3
), pp.
A33
A36
. 10.1149/2.002203esl
12.
Ebner
,
M.
,
Geldmacher
,
F.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes
,”
Adv. Energy Mater.
,
3
(
7
), pp.
845
850
. 10.1002/aenm.201200932
13.
Lagadec
,
M. F.
,
Ebner
,
M.
,
Zahn
,
R.
, and
Wood
,
V.
,
2016
, “
Communication—Technique for Visualization and Quantification of Lithium-Ion Battery Separator Microstructure
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
A992
A994
. 10.1149/2.0811606jes
14.
Jaiser
,
S.
,
Kumberg
,
J.
,
Klaver
,
J.
,
Urai
,
J. L.
,
Schabel
,
W.
,
Schmatz
,
J.
, and
Scharfer
,
P.
,
2017
, “
Microstructure Formation of Lithium-Ion Battery Electrodes During Drying—An Ex-Situ Study Using Cryogenic Broad Ion Beam Slope-Cutting and Scanning Electron Microscopy (Cryo-BIB-SEM)
,”
J. Power Sources
,
345
, pp.
97
107
. 10.1016/j.jpowsour.2017.01.117
15.
Pietsch
,
P.
, and
Wood
,
V.
,
2017
, “
X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
451
479
. 10.1146/annurev-matsci-070616-123957
16.
Pietsch
,
P.
,
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2018
, “
Determining the Uncertainty in Microstructural Parameters Extracted From Tomographic Data
,”
Sustain. Energy Fuels
,
2
, pp.
598
605
. 10.1039/C7SE00498B
17.
Morelly
,
S. L.
,
Gelb
,
J.
,
Iacoviello
,
F.
,
Shearing
,
P. R.
,
Harris
,
S. J.
,
Alvarez
,
N. J.
, and
Tang
,
M. H.
,
2018
, “
Three-Dimensional Visualization of Conductive Domains in Battery Electrodes With Contrast-Enhancing Nanoparticles
,”
ACS Appl. Energy Mater.
,
1
(
9
), pp.
4479
4484
. 10.1021/acsaem.8b01184
18.
Ebner
,
M.
, and
Wood
,
V.
,
2015
, “
Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes
,”
J. Electrochem. Soc.
,
162
(
2
), pp.
A3064
A3070
. 10.1149/2.0111502jes
19.
Zielke
,
L.
,
Hutzenlaub
,
T.
,
Wheeler
,
D. R.
,
Chao
,
C.-W.
,
Manke
,
I.
,
Hilger
,
A.
,
Paust
,
N.
,
Zengerle
,
R.
, and
Thiele
,
S.
,
2015
, “
Three-Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X-Ray Tomography
,”
Adv. Energy Mater.
,
5
(
5
), p.
1401612
. 10.1002/aenm.201401612
20.
Mistry
,
A.
,
Juarez-Robles
,
D.
,
Stein
,
M.
,
Smith
,
K.
, and
Mukherjee
,
P. P.
,
2016
, “
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031006
. 10.1115/1.4035198
21.
Inoue
,
G.
, and
Kawase
,
M.
,
2017
, “
Numerical and Experimental Evaluation of the Relationship Between Porous Electrode Structure and Effective Conductivity of Ions and Electrons in Lithium-Ion Batteries
,”
J. Power Sources
,
342
, pp.
476
488
. 10.1016/j.jpowsour.2016.12.098
22.
Kashkooli
,
A. G.
,
Amirfazli
,
A.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Felicelli
,
S.
,
Park
,
H. W.
,
Feng
,
K.
,
De Andrade
,
V.
, and
Chen
,
Z.
,
2017
, “
Representative Volume Element Model of Lithium-Ion Battery Electrodes Based on X-Ray Nano-Tomography
,”
J. Appl. Electrochem.
,
47
(
3
), pp.
281
293
. 10.1007/s10800-016-1037-y
23.
Lim
,
C.
,
Yan
,
B.
,
Yin
,
L.
, and
Zhu
,
L.
,
2012
, “
Simulation of Diffusion-Induced Stress Using Reconstructed Electrodes Particle Structures Generated by Micro/Nano-CT
,”
Electrochim. Acta
,
75
, pp.
279
287
. 10.1016/j.electacta.2012.04.120
24.
Yan
,
B.
,
Lim
,
C.
,
Yin
,
L.
, and
Zhu
,
L.
,
2012
, “
Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-Ray Nano-CT Images
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
A1604
A1614
. 10.1149/2.024210jes
25.
Wiedemann
,
A. H.
,
Goldin
,
G. M.
,
Barnett
,
S. A.
,
Zhu
,
H.
, and
Kee
,
R. J.
,
2013
, “
Effects of Three-Dimensional Cathode Microstructure on the Performance of Lithium-Ion Battery Cathodes
,”
Electrochim. Acta
,
88
, pp.
580
588
. 10.1016/j.electacta.2012.10.104
26.
Hutzenlaub
,
T.
,
Thiele
,
S.
,
Paust
,
N.
,
Spotnitz
,
R.
,
Zengerle
,
R.
, and
Walchshofer
,
C.
,
2014
, “
Three-Dimensional Electrochemical Li-Ion Battery Modelling Featuring a Focused Ion-Beam/Scanning Electron Microscopy Based Three-Phase Reconstruction of a Licoo2 Cathode
,”
Electrochim. Acta
,
115
, pp.
131
139
. 10.1016/j.electacta.2013.10.103
27.
Kashkooli
,
A. G.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Feng
,
K.
,
Litster
,
S.
,
Babu
,
S. K.
,
Zhu
,
L.
, and
Chen
,
Z.
,
2016
, “
Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-Scale X-Ray Computed Tomography
,”
J. Power Sources
,
307
, pp.
496
509
. 10.1016/j.jpowsour.2015.12.134
28.
Roberts
,
S. A.
,
Brunini
,
V. E.
,
Long
,
K. N.
, and
Grillet
,
A. M.
,
2014
, “
A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3052
F3059
. 10.1149/2.0081411jes
29.
Mendoza
,
H.
,
Roberts
,
S. A.
,
Brunini
,
V. E.
, and
Grillet
,
A. M.
,
2016
, “
Mechanical and Electrochemical Response of a LiCoO2 Cathode Using Reconstructed Microstructures
,”
Electrochim. Acta
,
190
, pp.
1
15
. 10.1016/j.electacta.2015.12.224
30.
Lee
,
S.
,
Sastry
,
A. M.
, and
Park
,
J.
,
2016
, “
Study on Microstructures of Electrodes in Lithium-Ion Batteries Using Variational Multi-Scale Enrichment
,”
J. Power Sources
,
315
, pp.
96
110
. 10.1016/j.jpowsour.2016.02.086
31.
Wu
,
L.
,
Xiao
,
X.
,
Wen
,
Y.
, and
Zhang
,
J.
,
2016
, “
Three-Dimensional Finite Element Study on Stress Generation in Synchrotron X-Ray Tomography Reconstructed Nickel-Manganese-Cobalt Based Half Cell
,”
J. Power Sources
,
336
, pp.
8
18
. 10.1016/j.jpowsour.2016.10.052
32.
Ferraro
,
M. E.
,
Trembacki
,
B. L.
,
Brunini
,
V. E.
,
Noble
,
D. R.
, and
Roberts
,
S. A.
,
2020
, “
Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013543
. 10.1149/1945-7111/ab632b
33.
Babu
,
S. K.
,
Mohamed
,
A. I.
,
Whitacre
,
J. F.
, and
Litster
,
S.
,
2015
, “
Multiple Imaging Mode X-Ray Computed Tomography for Distinguishing Active and Inactive Phases in Lithium-Ion Battery Cathodes
,”
J. Power Sources
,
283
, pp.
314
319
. 10.1016/j.jpowsour.2015.02.086
34.
Liu
,
Z.
,
Chen-Wiegart
,
Y.-C. K.
,
Wang
,
J.
,
Barnett
,
S. A.
, and
Faber
,
K. T.
,
2016
, “
Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography
,”
Microsc. Microanal.
,
22
(
1
), pp.
140
148
. 10.1017/S1431927615015640
35.
Foster
,
J.
,
Huang
,
X.
,
Jiang
,
M.
,
Chapman
,
S.
,
Protas
,
B.
, and
Richardson
,
G.
,
2017
, “
Causes of Binder Damage in Porous Battery Electrodes and Strategies to Prevent It
,”
J. Power Sources
,
350
, pp.
140
151
. 10.1016/j.jpowsour.2017.03.035
36.
Forouzan
,
M. M.
,
Chao
,
C.-W.
,
Bustamante
,
D.
,
Mazzeo
,
B. A.
, and
Wheeler
,
D. R.
,
2016
, “
Experiment and Simulation of the Fabrication Process of Lithium-Ion Battery Cathodes for Determining Microstructure and Mechanical Properties
,”
J. Power Sources
,
312
, pp.
172
183
. 10.1016/j.jpowsour.2016.02.014
37.
Srivastava
,
I.
,
Bolintineanu
,
D. S.
,
Lechman
,
J. B.
, and
Roberts
,
S. A.
,
2019
, “
Controlling Binder Adhesion to Impact Electrode Mesostructure and Transport
”,
ECSarXiv
. doi: 10.1149/osf.io/ehdq6.
38.
Rahani
,
E. K.
, and
Shenoy
,
V. B.
,
2013
, “
Role of Plastic Deformation of Binder on Stress Evolution During Charging and Discharging in Lithium-Ion Battery Negative Electrodes
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1153
A1162
. 10.1149/2.046308jes
39.
Zielke
,
L.
,
Hutzenlaub
,
T.
,
Wheeler
,
D. R.
,
Manke
,
I.
,
Arlt
,
T.
,
Paust
,
N.
,
Zengerle
,
R.
, and
Thiele
,
S.
,
2014
, “
A Combination of X-Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li-Ion Battery Cathodes
,”
Adv. Energy Mater.
,
4
(
8
), p.
1301617
. 10.1002/aenm.201301617
40.
Liu
,
H.
,
Foster
,
J. M.
,
Gully
,
A.
,
Krachkovskiy
,
S.
,
Jiang
,
M.
,
Wu
,
Y.
,
Yang
,
X.
,
Protas
,
B.
,
Goward
,
G. R.
, and
Botton
,
G. A.
,
2016
, “
Three-Dimensional Investigation of Cycling-Induced Microstructural Changes in Lithium-Ion Battery Cathodes Using Focused Ion Beam/Scanning Electron Microscopy
,”
J. Power Sources
,
306
, pp.
300
308
. 10.1016/j.jpowsour.2015.11.108
41.
Liu
,
Z.
,
Verhallen
,
T. W.
,
Singh
,
D. P.
,
Wang
,
H.
,
Wagemaker
,
M.
, and
Barnett
,
S.
,
2016
, “
Relating the 3D Electrode Morphology to Li-Ion Battery Performance; a Case for LiFePO4
,”
J. Power Sources
,
324
, pp.
358
367
. 10.1016/j.jpowsour.2016.05.097
42.
Mistry
,
A. N.
,
Smith
,
K.
, and
Mukherjee
,
P. P.
,
2018
, “
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
,”
ACS Appl. Mater. Interfaces
,
10
(
7
), pp.
6317
6326
. 10.1021/acsami.7b17771
43.
Trembacki
,
B. L.
,
Noble
,
D. R.
,
Brunini
,
V. E.
,
Ferraro
,
M. E.
, and
Roberts
,
S. A.
,
2017
, “
Mesoscale Effective Property Simulations Incorporating Conductive Binder
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3613
E3626
. 10.1149/2.0601711jes
44.
Trembacki
,
B. L.
,
Mistry
,
A. N.
,
Noble
,
D. R.
,
Ferraro
,
M. E.
,
Mukherjee
,
P. P.
, and
Roberts
,
S. A.
,
2018
, “
Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
E725
E736
. 10.1149/2.0981813jes
45.
Roberts
,
S. A.
,
Mendoza
,
H.
,
Brunini
,
V. E.
, and
Noble
,
D. R.
,
2018
, “
A Verified Conformal Decomposition Finite Element Method for Implicit, Many-Material Geometries
,”
J. Comput. Phys.
,
375
, pp.
352
367
. 10.1016/j.jcp.2018.08.022
46.
Noble
,
D. R.
,
Newren
,
E. P.
, and
Lechman
,
J. B.
,
2010
, “
A Conformal Decomposition Finite Element Method for Modeling Stationary Fluid Interface Problems
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
725
742
. 10.1002/fld.2095
47.
Kramer
,
R. M. J.
, and
Noble
,
D. R.
,
2014
, “
A Conformal Decomposition Finite Element Method for Arbitrary Discontinuities on Moving Interfaces
,”
Int. J. Numer. Methods Eng.
,
100
(
2
), pp.
87
110
. 10.1002/nme.4717
48.
Roberts
,
S. A.
,
Mendoza
,
H.
,
Brunini
,
V. E.
,
Trembacki
,
B. L.
,
Noble
,
D. R.
, and
Grillet
,
A. M.
,
2016
, “
Insights Into Lithium-Ion Battery Degradation and Safety Mechanisms From Mesoscale Simulations Using Experimentally Reconstructed Mesostructures
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031005
. 10.1115/1.4034410
49.
Grillet
,
A. M.
,
Humplik
,
T.
,
Stirrup
,
E. K.
,
Roberts
,
S. A.
,
Barringer
,
D. A.
,
Snyder
,
C. M.
,
Janvrin
,
M. R.
, and
Apblett
,
C. A.
,
2016
, “
Conductivity Degradation of Polyvinylidene Fluoride Composite Binder During Cycling: Measurements and Simulations for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
A1859
A1871
. 10.1149/2.0341609jes
50.
SIERRA Thermal/Fluid Development Team
,
2018
, “
SIERRA Multimechanics Module: Aria User Manual—Version 4.50
,”
Tech. Rep. SAND2018-12008
,
Sandia National Laboratories
,
Oct
.
51.
Vierrath
,
S.
,
Zielke
,
L.
,
Moroni
,
R.
,
Mondon
,
A.
,
Wheeler
,
D. R.
,
Zengerle
,
R.
, and
Thiele
,
S.
,
2015
, “
Morphology of Nanoporous Carbon-Binder Domains in Li-Ion Batteries—A FIB-SEM Study
,”
Electrochem. Commun.
,
60
, pp.
176
179
. 10.1016/j.elecom.2015.09.010
52.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2012
,
Electrochemical Systems
,
John Wiley & Sons
,
New York
.
53.
Kehrwald
,
D.
,
Shearing
,
P. R.
,
Brandon
,
N. P.
,
Sinha
,
P. K.
, and
Harris
,
S. J.
,
2011
, “
Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode
,”
J. Electrochem. Soc.
,
158
(
12
), pp.
A1393
A1399
. 10.1149/2.079112jes
54.
Wang
,
H.
,
Jang
,
Y.-I.
,
Huang
,
B.
,
Sadoway
,
D. R.
, and
Chiang
,
Y.-M.
,
1999
, “
TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
473
480
. 10.1149/1.1391631
55.
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries
,”
Science
,
342
(
6159
), pp.
716
720
. 10.1126/science.1241882
56.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
. 10.1016/j.jpowsour.2013.06.165
57.
Denton
,
A. R.
, and
Ashcroft
,
N. W.
,
1991
, “
Vegard’s Law
,”
Phys. Rev. A
,
43
(
6
), pp.
3161
3164
. 10.1103/PhysRevA.43.3161
58.
Malavé
,
V.
,
Berger
,
J. R.
,
Zhu
,
H.
, and
Kee
,
R. J.
,
2014
, “
A Computational Model of the Mechanical Behavior Within Reconstructed LixCoO2 Li-Ion Battery Cathode Particles
,”
Electrochim. Acta
,
130
, pp.
707
717
. 10.1016/j.electacta.2014.03.113
59.
Zhang
,
X.
,
Sastry
,
A. M.
, and
Shyy
,
W.
,
2008
, “
Intercalation-Induced Stress and Heat Generation Within Single Lithium-Ion Battery Cathode Particles
,”
J. Electrochem. Soc.
,
155
(
7
), pp.
A542
A552
. 10.1149/1.2926617
60.
Chen
,
L.
,
Xie
,
X.
,
Xie
,
J.
,
Wang
,
K.
, and
Yang
,
J.
,
2006
, “
Binder Effect on Cycling Performance of Silicon/Carbon Composite Anodes for Lithium Ion Batteries
,”
J. Appl. Electrochem.
,
36
(
10
), pp.
1099
1104
. 10.1007/s10800-006-9191-2
61.
Santimetaneedol
,
A.
,
Tripuraneni
,
R.
,
Chester
,
S. A.
, and
Nadimpalli
,
S. P.
,
2016
, “
Time-Dependent Deformation Behavior of Polyvinylidene Fluoride Binder: Implications on the Mechanics of Composite Electrodes
,”
J. Power Sources
,
332
, pp.
118
128
. 10.1016/j.jpowsour.2016.09.102
62.
de Vasconcelos
,
L. S.
,
Xu
,
R.
,
Li
,
J.
, and
Zhao
,
K.
,
2016
, “
Grid Indentation Analysis of Mechanical Properties of Composite Electrodes in Li-Ion Batteries
,”
Extreme Mech. Lett.
,
9
(
Part 3
), pp.
495
502
. 10.1016/j.eml.2016.03.002
63.
Ebner
,
M.
,
Chung
,
D.-W.
,
García
,
R. E.
, and
Wood
,
V.
,
2014
, “
Tortuosity Anisotropy in Lithium-Ion Battery Electrodes
,”
Adv. Energy Mater.
,
4
(
5
), p.
1301278
. 10.1002/aenm.201301278
64.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
. 10.1149/1.1836921
65.
Westphal
,
B. G.
, and
Kwade
,
A.
,
2018
, “
Critical Electrode Properties and Drying Conditions Causing Component Segregation in Graphitic Anodes for Lithium-Ion Batteries
,”
J. Storage Mater.
,
18
, pp.
509
517
. 10.1016/j.est.2018.06.009
66.
Vadakkepatt
,
A.
,
Trembacki
,
B.
,
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2016
, “
Bruggeman’s Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A1
A12
. 10.1149/2.0151602jes
67.
Lanterman
,
B. J.
,
Riet
,
A. A.
,
Gates
,
N. S.
,
Flygare
,
J. D.
,
Cutler
,
A. D.
,
Vogel
,
J. E.
,
Wheeler
,
D. R.
, and
Mazzeo
,
B. A.
,
2015
, “
Micro-Four-Line Probe to Measure Electronic Conductivity and Contact Resistance of Thin-Film Battery Electrodes
,”
J. Electrochem. Soc.
,
162
(
10
), pp.
A2145
A2151
. 10.1149/2.0581510jes
68.
Liu
,
G.
,
Zheng
,
H.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A214
A221
. 10.1149/2.024203jes
69.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
. 10.1149/1.2054684
70.
Smith
,
K.
, and
Wang
,
C.-Y.
,
2006
, “
Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles
,”
J. Power Sources
,
160
(
1
), pp.
662
673
. 10.1016/j.jpowsour.2006.01.038
71.
Allu
,
S.
,
Kalnaus
,
S.
,
Simunovic
,
S.
,
Nanda
,
J.
,
Turner
,
J.
, and
Pannala
,
S.
,
2016
, “
A Three-Dimensional Meso-Macroscopic Model for Li-Ion Intercalation Batteries
,”
J. Power Sources
,
325
, pp.
42
50
. 10.1016/j.jpowsour.2016.06.001
72.
Wang
,
C.
,
Gu
,
W.
, and
Liaw
,
B.
,
1998
, “
Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development
,”
J. Electrochem. Soc.
,
145
(
10
), pp.
3407
3417
. 10.1149/1.1838820
73.
Wu
,
S.-L.
,
Zhang
,
W.
,
Song
,
X.
,
Shukla
,
A. K.
,
Liu
,
G.
,
Battaglia
,
V.
, and
Srinivasan
,
V.
,
2012
, “
High Rate Capability of Li(Ni1/3Mn1/3Co1/3)O2 Electrode for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
A438
A444
. 10.1149/2.062204jes
You do not currently have access to this content.