Ferrous nitrate/nickel oxide {Fe(NO3)2–NiO} nanocomposite was synthesized via two-step facile hydrothermal route. The nanocomposite exhibits crystalline structure as unveiled by X-ray diffraction (XRD) pattern, while as the scanning electron microscope (SEM) images divulge spherical morphologies for both Fe(NO3)2 as well as NiO nanoparticles differentiating from each other in size. Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques were used to investigate supercapacitive behavior of the symmetrically fabricated nanocomposite electrode configuration using aqueous KOH as the electrolyte. The CV analyses demonstrate dominant electrical double layer capacitance (EDLC) behavior in the potential range of 0–1 V. From charge–discharge curves, the maximum specific capacitance calculated was 460 F g−1 corresponding to the energy density of 16 W h kg−1 at a high power density of 250 W kg−1. EIS data affiliate well with the CV and GCD results justifying the maximum contribution of specific capacitance due to double layer capacitance. The nanocomposite retained 84% of its original capacitance after 1000 cycles and yielded maximum efficiency of 78%.

References

References
1.
Conway
,
B. E.
,
1999
,
Electrochemical Supercapacitors: Scientific, Fundamentals, and Technological Applications
,
Kluwer
,
New York
.
2.
Park
,
B. H.
,
Lee
,
M. W.
, and
Jeong
,
S. M.
,
2018
, “
Electrochemical Behavior of Chalcogen and Halogen Fission Products in Pyro-Electrochemical Reduction Process
,”
J. Appl. Electrochem.
,
48
(
6
), pp.
739
745
.https://link.springer.com/article/10.1007/s10800-018-1153-y
3.
Long
,
C.
,
Zheng
,
M.
,
Xiao
,
Y.
,
Lei
,
B.
,
Dong
,
H.
,
Zhang
,
H.
,
Hu
,
H.
, and
Liu
,
Y.
,
2015
, “
Amorphous Ni–Co Binary Oxide With the Hierarchical Porous Structure for Electrochemical Capacitors
,”
ACS Appl. Mater. Interfaces
,
7
(
44
), pp.
24419
24429
.
4.
Yang
,
M.
,
Cheng
,
H.
,
Gu
,
Y.
,
Sun
,
Z.
,
Hu
,
J.
,
Cao
,
L.
,
Lv
,
F.
,
Li
,
M.
,
Wang
,
W.
,
Wang
,
Z.
, and
Wu
,
S.
,
2015
, “
Facile Electrodeposition of 3D Concentration-Gradient Ni-Co Hydroxide Nanostructures on Nickel Foam as High-Performance Electrodes for Asymmetric Supercapacitors
,”
Nano Res.
,
8
(
8
), pp.
2744
2754
.
5.
Zhang
,
Y. Z.
,
Wang
,
Y.
,
Cheng
,
T.
,
Lai
,
W. Y.
,
Pang
,
H.
, and
Huang
,
W.
,
2015
, “
Flexible Supercapacitors Based on Paper Substrates: A New Paradigm for Low-Cost Energy Storage
,”
Chem. Soc. Rev.
,
44
(
15
), pp.
5181
5199
.
6.
Yang
,
C. S.
,
Jang
,
Y. S.
, and
Jeong
,
H. K.
,
2014
, “
Bamboo-Based Activated Carbon for Supercapacitor Applications
,”
Curr. Appl. Phys.
,
14
(
12
), pp.
1616
1620
.
7.
Suárez-Guevara
,
J.
,
Ruiz
,
V.
, and
Gómez-Romero
,
P.
,
2014
, “
Stable Graphene–Polyoxometalate Nanomaterials for Application in Hybrid Supercapacitors
,”
Phys. Chem. Chem. Phys.
,
16
(
38
), pp.
20411
20414
.
8.
Kim
,
D. K.
,
Hwang
,
M.
,
Ko
,
D.
,
Kang
,
J.
,
Seong
,
K. D.
, and
Piao
,
Y.
,
2017
, “
Electrochemical Performance of 3D Porous Ni-Co Oxide With Electrochemically Exfoliated Graphene for Asymmetric Supercapacitor Applications
,”
Electrochim. Acta
,
246
, pp.
680
688
.
9.
Zhu
,
M.
,
Meng
,
D.
,
Wang
,
C.
, and
Diao
,
G.
,
2013
, “
Facile Fabrication of Hierarchically Porous CuFe2O4 Nanospheres With Enhanced Capacitance Property
,”
ACS Appl. Mater. Interfaces
,
5
(
13
), pp.
6030
6037
.
10.
Xu
,
Y.
,
Wang
,
X.
,
An
,
C.
,
Wang
,
Y.
,
Jiao
,
L.
, and
Yuan
,
H.
,
2014
, “
Facile Synthesis Route of Porous MnCo2O4 and CoMn2O4 Nanowires and Their Excellent Electrochemical Properties in Supercapacitors
,”
J. Mater. Chem. A
,
2
(
39
), pp.
16480
16488
.
11.
Bai
,
Y.
,
Wang
,
R.
,
Lu
,
X.
,
Sun
,
J.
, and
Gao
,
L.
,
2016
, “
Template Method to Controllable Synthesis 3D Porous NiCo2O4 With Enhanced Capacitance and Stability for Supercapacitors
,”
J. Colloid. Interface Sci.
,
468
, pp.
1
9
.
12.
Zhang
,
M.
,
Guo
,
S.
,
Zheng
,
L.
,
Zhang
,
G.
,
Hao
,
Z.
,
Kang
,
L.
, and
Liu
,
Z. H.
,
2013
, “
Preparation of NiMn2O4 With the Large Specific Surface Area From an Epoxide-Driven Sol–Gel Process and Its Capacitance
,”
Electrochim. Acta
,
87
, pp.
546
553
.
13.
Zhang
,
H.
,
Wu
,
J.
,
Zhai
,
C.
,
Ma
,
X.
,
Du
,
N.
,
Tu
,
J.
, and
Yang
,
D.
,
2007
, “
From Cobalt Nitrate Carbonate Hydroxide Hydrate Nanowires to Porous Co3O4 Nanorods for High Performance Lithium-Ion Battery Electrodes
,”
Nanotechnology
,
19
(
3
), p.
035711
.
14.
Konstantinou
,
F.
,
Shougee
,
A.
,
Albrecht
,
T.
, and
Fobelets
,
K.
,
2017
, “
TiO2 Coated Si Nanowire Electrodes for Electrochemical Double Layer Capacitors in Room Temperature Ionic Liquid
,”
J. Phys. D
,
50
(
41
), p.
415503
.
15.
Wu
,
X.
,
Wang
,
Q.
,
Zhang
,
W.
,
Wang
,
Y.
, and
Chen
,
W.
,
2016
, “
Nano Nickel Oxide Coated Graphene/Polyaniline Composite Film With High Electrochemical Performance for Flexible Supercapacitor
,”
Electrochim. Acta
,
211
, pp.
1066
1075
.
16.
Faraji
,
S.
, and
Ani
,
F. N.
,
2014
, “
Microwave-Assisted Synthesis of Metal Oxide/Hydroxide Composite Electrodes for High Power Supercapacitors—A Review
,”
J. Power Sources
,
263
, pp.
338
360
.
17.
Wang
,
X.
,
Song
,
J.
,
Gao
,
L.
,
Jin
,
J.
,
Zheng
,
H.
, and
Zhang
,
Z.
,
2004
, “
Optical and Electrochemical Properties of Nanosized NiO Via Thermal Decomposition of Nickel Oxalate Nanofibres
,”
Nanotechnology
,
16
(
1
), p.
37
.
18.
Lin
,
S. H.
,
Chen
,
F. R.
, and
Kai
,
J. J.
,
2008
, “
Electrochromic Properties of Nano-Composite Nickel Oxide Film
,”
Appl. Surf. Sci.
,
254
(
11
), pp.
3357
3363
.
19.
Eskusson
,
J.
,
Rauwel
,
P.
,
Nerut
,
J.
, and
Jänes
,
A.
,
2016
, “
A Hybrid Capacitor Based on Fe3O4-Graphene Nanocomposite/Few-Layer Graphene in Different Aqueous Electrolytes
,”
J. Electrochem. Soc.
,
1
, pp.
A2768
A2775
.
20.
Tooming
,
T.
,
Thomberg
,
T.
,
Siinor
,
L.
,
Tõnurist
,
K.
,
Jänes
,
A.
, and
Lust
,
E.
,
2014
, “
A Type High Capacitance Supercapacitor Based on Mixed Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions
,”
J. Electrochem. Soc.
,
161
(
3
), pp.
A222
A227
.
21.
Siinor
,
L.
,
Siimenson
,
C.
,
Lust
,
K.
, and
Lust
,
E.
,
2013
, “
Mixture of 1-Ethyl-3-Methylimidazolium Tetrafluoroborate and 1-Ethyl-3-Methylimidazolium Iodide: A New Potential High Capacitance Electrolyte for EDLCs
,”
Electrochem. Commun.
,
1
, pp.
5
7
.
22.
Gund
,
G. S.
,
Dubal
,
D. P.
,
Jambure
,
S. B.
,
Shinde
,
S. S.
, and
Lokhande
,
C. D.
,
2013
, “
Temperature Influence on Morphological Progress of Ni(OH)2 Thin Films and Its Subsequent Effect on Electrochemical Supercapacitive Properties
,”
J. Mater. Chem. A
,
1
(
15
), pp.
4793
4803
.
23.
Snook
,
G. A.
,
Kao
,
P.
, and
Best
,
A. S.
,
2011
, “
Conducting-Polymer-Based Supercapacitor Devices and Electrodes
,”
J. Power Sources
,
196
(
1
), pp.
1
12
.
24.
Wang
,
D. W.
,
Li
,
F.
, and
Cheng
,
H. M.
,
2008
, “
Hierarchical Porous Nickel Oxide and Carbon as Electrode Materials for Asymmetric Supercapacitor
,”
J. Power Sources
,
185
(
2
), pp.
1563
1568
.
25.
Deng
,
W.
,
Ji
,
X.
,
Chen
,
Q.
, and
Banks
,
C. E.
,
2011
, “
Electrochemical Capacitors Utilising Transition Metal Oxides: An Update of Recent Developments
,”
RSC Adv.
,
1
(
7
), pp.
1171
1178
.
26.
Lokhande
,
C. D.
,
Dubal
,
D. P.
, and
Joo
,
O. S.
,
2011
, “
Metal Oxide Thin Film Based Supercapacitors
,”
Curr. Appl. Phys.
,
11
(
3
), pp.
255
270
.
27.
Shaikjee
,
A.
, and
Coville
,
N. J.
,
2012
, “
The Role of the Hydrocarbon Source on the Growth of Carbon Materials
,”
Carbon
,
50
(
10
), pp.
3376
3398
.
28.
Xu
,
J.
,
Gao
,
Q.
,
Zhang
,
Y.
,
Tan
,
Y.
,
Tian
,
W.
,
Zhu
,
L.
, and
Jiang
,
L.
,
2014
, “
Preparing Two-Dimensional Microporous Carbon From Pistachio Nutshell With High Areal Capacitance as Supercapacitor Materials
,”
Sci. Rep.
,
4
, p.
5545
.https://www.nature.com/articles/srep05545
29.
Huang
,
C. P.
,
Wang
,
H. W.
, and
Chiu
,
P. C.
,
1998
, “
Nitrate Reduction by Metallic Iron
,”
Water Res.
,
32
(
8
), pp.
2257
2264
.
30.
Zheng
,
Y. Z.
,
Ding
,
H. Y.
, and
Zhang
,
M. L.
,
2009
, “
Preparation and Electrochemical Properties of Nickel Oxide as a Supercapacitor Electrode Material
,”
Mater. Res. Bull.
,
44
(
2
), pp.
403
407
.
31.
Wang
,
H.
,
Xu
,
Z.
,
Kohandehghan
,
A.
,
Li
,
Z.
,
Cui
,
K.
,
Tan
,
X.
,
Stephenson
,
T. J.
,
King'ondu
,
C. K.
,
Holt
,
C. M.
,
Olsen
,
B. C.
, and
Tak
,
J. K.
,
2013
, “
Interconnected Carbon Nanosheets Derived From Hemp for Ultrafast Supercapacitors With High Energy
,”
ACS Nano
,
7
(
6
), pp.
5131
5141
.
32.
Morishita
,
T.
,
Soneda
,
Y.
,
Hatori
,
H.
, and
Inagaki
,
M.
,
2007
, “
Carbon-Coated Tungsten and Molybdenum Carbides for Electrode of Electrochemical Capacitor
,”
Electrochim. Acta.
,
52
(
7
), pp.
2478
2484
.
33.
Seevakan
,
K.
,
Manikandan
,
A.
,
Devendran
,
P.
,
Shameem
,
A.
, and
Alagesan
,
T.
,
2018
, “
Microwave Combustion Synthesis, Magneto-Optical and Electrochemical Properties of NiMoO4 Nanoparticles for Supercapacitor Application
,”
Ceram. Int.
,
44
(
12
), pp.
13879
13887
.http://dx.doi.org/10.1016/j.ceramint.2018.04.235
34.
Yin
,
J.
,
Zheng
,
C.
,
Qi
,
L.
, and
Wang
,
H.
,
2011
, “
Concentrated NaClO4 Aqueous Solutions as Promising Electrolytes for Electric Double-Layer Capacitors
,”
J. Power Sources
,
196
(
8
), pp.
4080
4087
.
35.
Zheng
,
C.
,
Qi
,
L.
,
Yoshio
,
M.
, and
Wang
,
H.
,
2010
, “
Cooperation of Micro-and Meso-Porous Carbon Electrode Materials in Electric Double-Layer Capacitors
,”
J. Power Sources
,
195
(
13
), pp.
4406
4409
.
36.
Yu
,
C.
,
Masarapu
,
C.
,
Rong
,
J.
,
Wei
,
B.
, and
Jiang
,
H.
,
2009
, “
Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms
,”
Adv. Mater.
,
21
(
47
), pp.
4793
4797
.
37.
Wang
,
H.
,
Liang
,
Y.
,
Mirfakhrai
,
T.
,
Chen
,
Z.
,
Casalongue
,
H. S.
, and
Dai
,
H.
,
2011
, “
Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials
,”
Nano Res.
,
4
(
8
), pp.
729
736
.
38.
Du
,
X.
,
Wang
,
C.
,
Chen
,
M.
,
Jiao
,
Y.
, and
Wang
,
J.
,
2009
, “
Electrochemical Performances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution
,”
J. Phys. Chem. C
,
113
(
6
), p.
2643
.
39.
Tang
,
C.
,
Tang
,
Z.
, and
Gong
,
H.
,
2012
, “
Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
A651
A656
.
40.
Qu
,
Q.
,
Zhang
,
P.
,
Wang
,
B.
,
Chen
,
Y.
,
Tian
,
S.
,
Wu
,
Y.
, and
Holze
,
R.
,
2009
, “
Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors
,”
J. Phys. Chem. C
,
113
(
31
), pp.
14020
14027
.
41.
Fan
,
Z.
,
Yan
,
J.
,
Wei
,
T.
,
Zhi
,
L.
,
Ning
,
G.
,
Li
,
T.
, and
Wei
,
F.
,
2011
, “
Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes With High Power and Energy Density
,”
Adv. Funct. Mater.
,
21
(
12
), pp.
2366
2375
.
42.
Ede
,
S. R.
,
Ramadoss
,
A.
,
Nithiyanantham
,
U.
,
Anantharaj
,
S.
, and
Kundu
,
S.
,
2015
, “
Bio-Molecule Assisted Aggregation of ZnWO4 Nanoparticles (NPs) Into Chain-Like Assemblies: Material for High Performance Supercapacitor and as Catalyst for Benzyl Alcohol Oxidation
,”
Inorg. Chem.
,
54
(
8
), pp.
3851
3863
.
43.
Xiao
,
W.
,
Xia
,
H.
,
Fuh
,
J. Y.
, and
Lu
,
L.
,
2009
, “
Growth of Single-Crystal α-MnO2 Nanotubes Prepared by a Hydrothermal Route and Their Electrochemical Properties
,”
J. Power Sources
,
193
(
2
), pp.
935
938
.
44.
Zhou
,
E.
,
Wang
,
C.
,
Zhao
,
Q.
,
Li
,
Z.
,
Shao
,
M.
,
Deng
,
X.
,
Liu
,
X.
, and
Xu
,
X.
,
2016
, “
Facile Synthesis of MoO2 Nanoparticles as High Performance Supercapacitor Electrodes and Photocatalysts
,”
Ceram. Int.
,
42
(
2
), pp.
2198
–2
203
.
45.
Xie
,
Y.
,
Huang
,
C.
,
Zhou
,
L.
,
Liu
,
Y.
, and
Huang
,
H.
,
2009
, “
Supercapacitor Application of Nickel Oxide–Titania Nanocomposites
,”
Compos. Sci. Technol.
,
69
(
13
), pp.
2108
2114
.
You do not currently have access to this content.