A computational fluid dynamics model for high-temperature polymer electrolyte fuel cells (PEFC) is developed. This allows for three-dimensional (3D) transport-coupled calculations to be conducted. All major transport phenomena and electrochemical processes are taken into consideration. Verification of the present model is achieved by comparison with current density and oxygen concentration distributions along a one-dimensional (1D) channel. Validation is achieved by comparison with polarization curves from experimental data gathered in-house. Deviations between experimental and numerical results are minor. Internal transport phenomena are also analyzed. Local variations of current density from under channel regions and under rib regions are displayed, as are oxygen mole fractions. The serpentine gas channels contribute positively to gas redistribution in the gas diffusion layers (GDLs) and channels.

References

References
1.
Siegel
,
C.
,
2008
, “
Review of Computational Heat and Mass Transfer Modeling in Polymer-Electrolyte-Membrane (PEM) Fuel Cells
,”
Energy
,
33
(
9
), pp.
1331
1352
.
2.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
3.
Weber
,
A. Z.
,
Borup
,
R. L.
,
Darling
,
R. M.
,
Das
,
P. K.
,
Dursch
,
T. J.
,
Gu
,
W.
,
Harvey
,
D.
,
Kusoglu
,
A.
,
Litster
,
S.
,
Mench
,
M. M.
,
Mukundan
,
R.
,
Owejan
,
J. P.
,
Pharoah
,
J. G.
,
Secanell
,
M.
, and
Zenyuk
,
I. V.
,
2014
, “
A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1254
F1299
.
4.
Chippar
,
P.
,
Oh
,
K.
,
Kim
,
W.-G.
, and
Ju
,
H.
,
2014
, “
Numerical Analysis of Effects of Gas Crossover Through Membrane Pinholes in High-Temperature Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
6
), pp.
2863
2871
.
5.
Wippermann
,
K.
,
Wannek
,
C.
,
Oetjen
,
H.-F.
,
Mergel
,
J.
, and
Lehnert
,
W.
,
2010
, “
Cell Resistances of Poly(2,5-Benzimidazole)-Based High Temperature Polymer Membrane Fuel Cell Membrane Electrode Assemblies: Time Dependence and Influence of Operating Parameters
,”
J. Power Sources
,
195
(
9
), pp.
2806
2809
.
6.
Galbiati
,
S.
,
Baricci
,
A.
,
Casalegno
,
A.
, and
Marchesi
,
R.
,
2012
, “
Experimental Study of Water Transport in a Polybenzimidazole-Based High Temperature PEMFC
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2462
2469
.
7.
Liu
,
Y.
,
Lehnert
,
W.
,
Janßen
,
H.
,
Samsun
,
R. C.
, and
Stolten
,
D.
,
2016
, “
A Review of High-Temperature Polymer Electrolyte Membrane Fuel-Cell (HT-PEMFC)-Based Auxiliary Power Units for Diesel-Powered Road Vehicles
,”
J. Power Sources
,
311
, pp.
91
102
.
8.
Steinberger-Wilckens
,
R.
, and
Lehnert
,
W.
,
2010
,
Innovations in Fuel Cell Technologies
,
Royal Society of Chemistry
, Cambridge, UK.
9.
Su
,
A.
,
Ferng
,
Y. M.
, and
Shih
,
J. C.
,
2009
, “
Experimentally and Numerically Investigating Cell Performance and Localized Characteristics for a High-Temperature Proton Exchange Membrane Fuel Cell
,”
Appl. Therm. Eng.
,
29
(
16
), pp.
3409
3417
.
10.
Oh
,
K.
,
Jeong
,
G.
,
Cho
,
E.
,
Kim
,
W.
, and
Ju
,
H.
,
2014
, “
A CO Poisoning Model for High-Temperature Proton Exchange Membrane Fuel Cells Comprising Phosphoric Acid-Doped Polybenzimidazole Membranes
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21915
21926
.
11.
Jiao
,
K.
, and
Li
,
X.
,
2010
, “
A Three-Dimensional Non-Isothermal Model of High Temperature Proton Exchange Membrane Fuel Cells With Phosphoric Acid Doped Polybenzimidazole Membranes
,”
Fuel Cells
,
10
(
3
), pp.
351
362
.
12.
Jiao
,
K.
,
Zhou
,
Y.
,
Du
,
Q.
,
Yin
,
Y.
,
Yu
,
S.
, and
Li
,
X.
,
2013
, “
Numerical Simulations of Carbon Monoxide Poisoning in High Temperature Proton Exchange Membrane Fuel Cells With Various Flow Channel Designs
,”
Appl. Energy
,
104
, pp.
21
41
.
13.
Su
,
A.
,
Ferng
,
Y.
, and
Shih
,
J.
,
2010
, “
CFD Investigating the Effects of Different Operating Conditions on the Performance and the Characteristics of a High-Temperature PEMFC
,”
Energy
,
35
(
1
), pp.
16
27
.
14.
Chippar
,
P.
,
Kang
,
K.
,
Lim
,
Y.-D.
,
Kim
,
W.-G.
, and
Ju
,
H.
,
2014
, “
Effects of Inlet Relative Humidity (RH) on the Performance of a High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC)
,”
Int. J. Hydrogen Energy
,
39
(
6
), pp.
2767
2775
.
15.
Yin
,
Y.
,
Wang
,
J.
,
Yang
,
X.
,
Du
,
Q.
,
Fang
,
J.
, and
Jiao
,
K.
,
2014
, “
Modeling of High Temperature Proton Exchange Membrane Fuel Cells With Novel Sulfonated Polybenzimidazole Membranes
,”
Int. J. Hydrogen Energy
,
39
(
25
), pp.
13671
13680
.
16.
Park
,
J.
, and
Min
,
K.
,
2012
, “
A Quasi-Three-Dimensional Non-Isothermal Dynamic Model of a High-Temperature Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
216
, pp.
152
161
.
17.
Kim
,
J.
,
Kim
,
M.
,
Lee
,
B.-G.
, and
Sohn
,
Y.-J.
,
2015
, “
Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells in Daily Based Start/Stop Operation Mode Using Reformed Gas
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7769
7776
.
18.
Kannan
,
A.
,
Kabza
,
A.
, and
Scholta
,
J.
,
2015
, “
Long Term Testing of Start-Stop Cycles on High Temperature PEM Fuel Cell Stack
,”
J. Power Sources
,
277
, pp.
312
316
.
19.
Jeon
,
Y.
,
Na
,
H.
,
Hwang
,
H.
,
Park
,
J.
,
Hwang
,
H.
, and
Shul
,
Y.-G.
,
2015
, “
Accelerated Life-Time Test Protocols for Polymer Electrolyte Membrane Fuel Cells Operated at High Temperature
,”
Int. J. Hydrogen Energy
,
40
(
7
), pp.
3057
3067
.
20.
Lee
,
H.-J.
,
Kim
,
B. G.
,
Lee
,
D. H.
,
Park
,
S. J.
,
Kim
,
Y.
,
Lee
,
J. W.
,
Henkensmeier
,
D.
,
Nam
,
S. W.
,
Kim
,
H.-J.
,
Kim
,
H.
, and
Kim
,
J.-Y.
,
2011
, “
Demonstration of a 20W Class High-Temperature Polymer Electrolyte Fuel Cell Stack With Novel Fabrication of a Membrane Electrode Assembly
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5521
5526
.
21.
Li
,
Q.
,
Jensen
,
J. O.
,
Savinell
,
R. F.
, and
Bjerrum
,
N. J.
,
2009
, “
High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells
,”
Prog. Polym. Sci.
,
34
(
5
), pp.
449
477
.
22.
Shen
,
C.
,
Kong
,
G.
,
Wang
,
J.
, and
Zhang
,
X.
,
2015
, “
Synthesis and Characterization of High Temperature Proton Exchange Membrane From Isocyanatopropyltriethoxysilane and Hydroxyethane Diphosphonic Acid
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
363
372
.
23.
Xue
,
C.
,
Zou
,
J.
,
Sun
,
Z.
,
Wang
,
F.
,
Han
,
K.
, and
Zhu
,
H.
,
2014
, “
Graphite Oxide/Functionalized Graphene Oxide and Polybenzimidazole Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
15
), pp.
7931
7939
.
24.
Úbeda
,
D.
,
Pinar
,
F. J.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
, and
Lobato
,
J.
,
2012
, “
An Easy Parameter Estimation Procedure for Modeling a HT-PEMFC
,”
Int. J. Hydrogen Energy
,
37
(
15
), pp.
11308
11320
.
25.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
26.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.
27.
Thampan
,
T.
,
Malhotra
,
S.
,
Tang
,
H.
, and
Datta
,
R.
,
2000
, “
Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3242
3250
.
28.
Berning
,
T.
,
Lu
,
D.
, and
Djilali
,
N.
,
2002
, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
,
106
(
1–2
), pp.
284
294
.
29.
Francesco
,
M. D.
,
Arato
,
E.
, and
Costa
,
P.
,
2004
, “
Transport Phenomena in Membranes for PEMFC Applications: An Analytical Approach to the Calculation of Membrane Resistance
,”
J. Power Sources
,
132
(
1
), pp.
127
134
.
30.
Fimrite
,
J.
,
Struchtrup
,
H.
, and
Djilali
,
N.
,
2005
, “
Transport Phenomena in Polymer Electrolyte Membranes—I: Modeling Framework
,”
J. Electrochem. Soc.
,
152
(
9
), pp.
A1804
A1814
.
31.
Lin
,
Y.
, and
Beale
,
S. B.
,
2005
, “
Numerical Predictions of Transport Phenomena in a Proton Exchange Membrane Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
4
), pp.
213
218
.
32.
Schwarz
,
D. H.
, and
Beale
,
S. B.
,
2009
, “
Calculations of Transport Phenomena and Reaction Distribution in a Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
4074
4081
.
33.
Peng
,
J.
, and
Lee
,
S. J.
,
2006
, “
Numerical Simulation of Proton Exchange Membrane Fuel Cells at High Operating Temperature
,”
J. Power Sources
,
162
(
2
), pp.
1182
1191
.
34.
Jiao
,
K.
,
Alaefour
,
I. E.
, and
Li
,
X.
,
2011
, “
Three-Dimensional Non-Isothermal Modeling of Carbon Monoxide Poisoning in High Temperature Proton Exchange Membrane Fuel Cells With Phosphoric Acid Doped Polybenzimidazole Membranes
,”
Fuel
,
90
(
2
), pp.
568
582
.
35.
Huang
,
H.
,
Zhou
,
Y.
,
Deng
,
H.
,
Xie
,
X.
,
Du
,
Q.
,
Yin
,
Y.
, and
Jiao
,
K.
,
2016
, “
Modeling of High Temperature Proton Exchange Membrane Fuel Cell Start-Up Processes
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
3113
3127
.
36.
Chippar
,
P.
, and
Ju
,
H.
,
2012
, “
Three-Dimensional Non-Isothermal Modeling of a Phosphoric Acid-Doped Polybenzimidazole (PBI) Membrane Fuel Cell
,”
Solid State Ionics
,
225
, pp.
30
39
.
37.
Chippar
,
P.
,
Oh
,
K.
,
Kim
,
D.
,
Hong
,
T.-W.
,
Kim
,
W.
, and
Ju
,
H.
,
2013
, “
Coupled Mechanical Stress and Multi-Dimensional CFD Analysis for High Temperature Proton Exchange Membrane Fuel Cells (HT-PEMFCs)
,”
Int. J. Hydrogen Energy
,
38
(
18
), pp.
7715
7724
.
38.
Oh
,
K.
,
Chippar
,
P.
, and
Ju
,
H.
,
2014
, “
Numerical Study of Thermal Stresses in High-Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC)
,”
Int. J. Hydrogen Energy
,
39
(
6
), pp.
2785
2794
.
39.
Oh
,
K.
, and
Ju
,
H.
,
2015
, “
Temperature Dependence of CO Poisoning in High-Temperature Proton Exchange Membrane Fuel Cells With Phosphoric Acid-Doped Polybenzimidazole Membranes
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7743
7753
.
40.
Kvesić
,
M.
,
Reimer
,
U.
,
Froning
,
D.
,
Lüke
,
L.
,
Lehnert
,
W.
, and
Stolten
,
D.
,
2012
, “
3D Modeling of a 200 cm2 HT-PEFC Short Stack
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2430
2439
.
41.
Kvesić
,
M.
,
Reimer
,
U.
,
Froning
,
D.
,
Lüke
,
L.
,
Lehnert
,
W.
, and
Stolten
,
D.
,
2012
, “
3D Modeling of an HT-PEFC Stack Using Reformate Gas
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12438
12450
.
42.
Hu
,
J.
,
Zhang
,
H.
,
Zhai
,
Y.
,
Liu
,
G.
,
Hu
,
J.
, and
Yi
,
B.
,
2006
, “
Performance Degradation Studies on PBI/H3PO4 High Temperature PEMFC and One-Dimensional Numerical Analysis
,”
Electrochim. Acta
,
52
(
2
), pp.
394
401
.
43.
Hu
,
J.
,
Zhang
,
H.
,
Hu
,
J.
,
Zhai
,
Y.
, and
Yi
,
B.
,
2006
, “
Two Dimensional Modeling Study of PBI/H3PO4 High Temperature PEMFCs Based on Electrochemical Methods
,”
J. Power Sources
,
160
(
2
), pp.
1026
1034
.
44.
Cheddie
,
D. F.
, and
Munroe
,
N. D.
,
2006
, “
Parametric Model of an Intermediate Temperature PEMFC
,”
J. Power Sources
,
156
(
2
), pp.
414
423
.
45.
Cheddie
,
D. F.
, and
Munroe
,
N. D.
,
2006
, “
Three Dimensional Modeling of High Temperature PEM Fuel Cells
,”
J. Power Sources
,
160
(
1
), pp.
215
223
.
46.
Sousa
,
T.
,
Mamlouk
,
M.
, and
Scott
,
K.
,
2010
, “
An Isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes
,”
Chem. Eng. Sci.
,
65
(
8
), pp.
2513
2530
.
47.
Sousa
,
T.
,
Mamlouk
,
M.
, and
Scott
,
K.
,
2010
, “
A Non-Isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes
,”
Fuel Cells
,
10
(
6
), pp.
993
1012
.
48.
Sousa
,
T.
,
Mamlouk
,
M.
, and
Scott
,
K.
,
2010
, “
A Dynamic Non-Isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes
,”
Int. J. Hydrogen Energy
,
35
(
21
), pp.
12065
12080
.
49.
Sousa
,
T.
,
Mamlouk
,
M.
,
Scott
,
K.
, and
Rangel
,
C. M.
,
2012
, “
Three Dimensional Model of a High Temperature PEMFC. Study of the Flow Field Effect on Performance
,”
Fuel Cells
,
12
(
4
), pp.
566
576
.
50.
Lobato
,
J.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
,
Pinar
,
F. J.
,
Mena
,
E.
, and
Úbeda
,
D.
,
2010
, “
Three-Dimensional Model of a 50 cm2 High Temperature PEM Fuel Cell. Study of the Flow Channel Geometry Influence
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5510
5520
.
51.
Su
,
A.
,
Ferng
,
Y.
,
Hou
,
J.
, and
Yu
,
T.
,
2012
, “
Experimental and Numerical Investigations of the Effects of PBI Loading and Operating Temperature on a High-Temperature PEMFC
,”
Int. J. Hydrogen Energy
,
37
(
9
), pp.
7710
7718
.
52.
Ferng
,
Y.
,
Su
,
A.
, and
Hou
,
J.
,
2014
, “
Parametric Investigation to Enhance the Performance of a PBI-Based High-Temperature PEMFC
,”
Energy Convers. Manage.
,
78
, pp.
431
437
.
53.
Sohn
,
Y.-J.
,
Kim
,
M.
,
Yang
,
T.-H.
, and
Kim
,
K.
,
2011
, “
Numerical Analysis of Convective and Diffusive Fuel Transports in High-Temperature Proton-Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
23
), pp.
15273
15282
.
54.
Wang
,
Y.
,
Sauer
,
D.
,
Koehne
,
S.
, and
Ersoez
,
A.
,
2014
, “
Dynamic Modeling of High Temperature PEM Fuel Cell Start-Up Process
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19067
19078
.
55.
Kim
,
M.
,
Kang
,
T.
,
Kim
,
J.
, and
Sohn
,
Y.-J.
,
2014
, “
One-Dimensional Modeling and Analysis for Performance Degradation of High Temperature Proton Exchange Membrane Fuel Cell Using PA Doped PBI Membrane
,”
Solid State Ionics
,
262
, pp.
319
323
.
56.
Grigoriev
,
S.
,
Kalinnikov
,
A.
,
Kuleshov
,
N.
, and
Millet
,
P.
,
2013
, “
Numerical Optimization of Bipolar Plates and Gas Diffusion Electrodes for PBI-Based PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
20
), pp.
8557
8567
.
57.
Kim
,
J.
,
Kim
,
M.
,
Kang
,
T.
,
Sohn
,
Y.-J.
,
Song
,
T.
, and
Choi
,
K. H.
,
2014
, “
Degradation Modeling and Operational Optimization for Improving The lifetime of High-Temperature PEM (Proton Exchange Membrane) Fuel Cells
,”
Energy
,
66
, pp.
41
49
.
58.
Kazdal
,
T. J.
,
Lang
,
S.
,
Kühl
,
F.
, and
Hampe
,
M. J.
,
2014
, “
Modelling of the Vapour-Liquid Equilibrium of Water and the In Situ Concentration of H3PO4 in a High Temperature Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
249
, pp.
446
456
.
59.
Lang
,
S.
,
Kazdal
,
T. J.
,
Kühl
,
F.
, and
Hampe
,
M. J.
,
2015
, “
Experimental Investigation and Numerical Simulation of the Electrolyte Loss in a HT-PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
2
), pp.
1163
1172
.
60.
Sun
,
H.
,
Xie
,
C.
,
Chen
,
H.
, and
Almheiri
,
S.
,
2015
, “
A Numerical Study on the Effects of Temperature and Mass Transfer in High Temperature PEM Fuel Cells With ab-PBI Membrane
,”
Appl. Energy
,
160
, pp.
937
944
.
61.
Beale
,
S. B.
,
Choi
,
H.-W.
,
Pharoah
,
J. G.
,
Roth
,
H. K.
,
Jasak
,
H.
, and
Jeon
,
D. H.
,
2016
, “
Open-Source Computational Model of a Solid Oxide Fuel Cell
,”
Comput. Phys. Commun.
,
200
, pp.
15
26
.
62.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
,
1966
, “
New Method for Prediction of Binary Gas-PHASE Diffusion Coefficients
,”
Ind. Eng. Chem.
,
58
(
5
), pp.
18
27
.
63.
Epstein
,
N.
,
1989
, “
On Tortuosity and the Tortuosity Factor in Flow and Diffusion Through Porous Media
,”
Chem. Eng. Sci.
,
44
(
3
), pp.
777
779
.
64.
Wilke
,
C. R.
,
1950
, “
Diffusional Properties of Multicomponent Gases
,”
Chem. Eng. Prog.
,
46
, pp.
95
104
.
65.
Beale
,
S. B.
,
Reimer
,
U.
,
Froning
,
D.
,
Jasak
,
H.
,
Andersson
,
M.
,
Pharoah
,
J. G.
, and
Lehnert
,
W.
,
2018
, “
Stability Issues of Fuel Cell Models in the Activation and Concentration Regimes
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
4
), p.
041008
.
66.
Kulikovsky
,
A.
,
Kucernak
,
A.
, and
Kornyshev
,
A.
,
2005
, “
Feeding PEM Fuel Cells
,”
Electrochim. Acta
,
50
(
6
), pp.
1323
1333
.
67.
Wang
,
Y.
, and
Wang
,
C.-Y.
,
2005
, “
Simulation of Flow and Transport Phenomena in a Polymer Electrolyte Fuel Cell Under Low-Humidity Operation
,”
J. Power Sources
,
147
(
1–2
), pp.
148
161
.
68.
Pharoah
,
J. G.
,
2005
, “
On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells
,”
J. Power Sources
,
144
(
1
), pp.
77
82
.
69.
Zhang
,
S.
,
Beale
,
S.
,
Reimer
,
U.
,
Lehnert
,
W.
, and
Stolten
,
D.
, 2019, “
Modeling Polymer Electrolyte Fuel Cells: A High Precision Analysis
,”
Appl. Energy
,
233–234
, pp. 1094–1103.
70.
Bruggeman
,
D.
,
1935
, “
The Calculation of Various Physical Constants of Heterogeneous Substances—I: The Dielectric Constants and Conductivities of Mixtures Composed of Isotropic Substances
,”
Ann. Phys.
,
416
(
7
), pp.
636
791
.
71.
Stenzel
,
O.
,
Pecho
,
O.
,
Holzer
,
L.
,
Neumann
,
M.
, and
Schmidt
,
V.
,
2016
, “
Predicting Effective Conductivities Based on Geometric Microstructure Characteristics
,”
AIChE J.
,
62
(
5
), pp.
1834
1843
.
72.
Gaiselmann
,
G.
,
Neumann
,
M.
,
Schmidt
,
V.
,
Pecho
,
O.
,
Hocker
,
T.
, and
Holzer
,
L.
,
2014
, “
Quantitative Relationships Between Microstructure and Effective Transport Properties Based on Virtual Materials Testing
,”
AIChE J.
,
60
(
6
), pp.
1983
1999
.
73.
Mukherjee
,
P. P.
, and
Wang
,
C.-Y.
,
2006
, “
Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer
,”
J. Electrochem. Soc.
,
153
(
5
), pp.
A840
A849
.
74.
Cao
,
Q.
,
Beale
,
S. B.
,
Reimer
,
U.
,
Froning
,
D.
, and
Lehnert
,
W.
,
2015
, “
The Importance of Diffusion Mechanisms in High Temperature Polymer Electrolyte Fuel Cells
,”
ECS Trans.
,
69
(
17
), pp.
1089
1103
.
75.
Cao, Q.
, 2017, “
Modelling of High Temperature Polymer Electrolyte Fuel Cells
,”
Energy Environ. Band
,
389
, pp. 173.
76.
Lindstrom
,
M.
, and
Wetton
,
B.
,
2017
, “
A Comparison of Fick and Maxwell–Stefan Diffusion Formulations in PEMFC Gas Diffusion Layers
,”
Heat Mass Transfer
,
53
(
1
), pp.
205
212
.
77.
Reimer
,
U.
,
Lehnert
,
W.
,
Holade
,
Y.
, and
Kokoh
,
B.
,
2018
, “
Irreversible Losses in Fuel Cells
,”
Fuel Cells and Hydrogen—From Fundamentals to Applied Research
,
V.
Hacker
and
S.
Mitsushima
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
15
40.
78.
Kulikovsky
,
A. A.
,
2014
, “
A Physically-Based Analytical Polarization Curve of a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
161
(
3
), pp.
F263
F270
.
You do not currently have access to this content.