In open-cathode polymer electrolyte fuel cell (PEFC) stacks, a significant temperature rise can exist due to insufficient cooling, especially at higher current densities. To improve stack thermal management while reducing the cost of cooling, we propose a forced air-convection open-cathode fuel cell stack with edge cooling (fins). The impact of the edge cooling is studied via a mathematical model of the three-dimensional two-phase flow and the associated conservation equations of mass, momentum, species, energy, and charge. The model includes the stack, ambient, fan, and fins used for cooling. The model results predict better thermal management and stack performance for the proposed design as compared to the conventional open-cathode stack design, which shows potential for practical applications. Several key design parameters—fin material and fin geometry—are also investigated with regard to the stack performance and thermal management.

References

References
1.
Martin
,
K. E.
,
Kopasz
,
J. P.
, and
McMurphy
,
K. W.
,
2010
, “
Status of Fuel Cells and the Challenges Facing Fuel Cell Technology Today
,”
Fuel Cell Chemistry and Operation
(American Chemical Society Symposium Series), Vol.
1040
,
American Chemical Society
,
Washington, D.C.
, pp.
1
13
.
2.
Buchi
,
F.
,
2002
, “
Small Size PEFC Systems for Special Applications
,”
Handbook of Fuel Cell Technology
, Vol.
4
,
John Wiley and Sons
,
New York
.
3.
Mock
,
P.
, and
Schmid
,
S. A.
,
2009
, “
Fuel Cells for Automotive Powertrains: A Techno-Economic Assessment
,”
J. Power Sources
,
190
, pp.
133
140
.10.1016/j.jpowsour.2008.10.123
4.
James
,
B. D.
,
Perez
,
J.
,
Baum
,
K. N.
,
Spisak
,
A.
, and
Sanders
,
M.
,
2011
, “
Low Temperature PEM Stationary Fuel Cell System Cost Analysis
,” accessed May 2012, www.fuelcellseminar.com/media/8898/lrd24-1%20james.pdf
5.
Chu
,
D.
, and
Jiang
,
R.
,
1999
, “
Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stack and Single Cell
,”
J. Power Sources
,
80
, pp.
226
234
.10.1016/S0378-7753(98)00263-8
6.
Rosa
,
D. T. S.
,
Pinto
,
D. G.
,
Silva
,
V. S.
,
Silva
,
R. A.
, and
Rangel
,
C. M.
,
2007
, “
High Performance Stack With Open-Cathode at Ambient Pressure and Temperature Conditions
,”
Int. J. Hydrogen Energy
,
32
, pp.
4350
4357
.10.1016/j.ijhydene.2007.05.042
7.
Jung
,
G. B.
,
Lo
,
K. F.
,
Su
,
A.
,
Weng
,
F. B.
,
Tu
,
C. H.
,
Yang
,
T. F.
, and
Chan
,
S. H.
,
2008
, “
Experimental Evaluation of an Ambient Forced-Feed Air-Supply PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
33
, pp.
2980
2985
.10.1016/j.ijhydene.2008.03.056
8.
Yim
,
S. D.
,
Sohn
,
Y. J.
,
Yoon
,
Y. G.
,
Um
,
S.
,
Kim
,
C. S.
, and
Lee
,
W. Y.
,
2008
, “
Operating Characteristic of 40 W Class PEMFC Stack Using Reformated Gas Under Low Humidifying Conditions
,”
J. Power Sources
,
178
, pp.
711
715
.10.1016/j.jpowsour.2007.09.104
9.
Wu
,
J.
,
Galli
,
S.
,
Lagana
,
I.
,
Pozio
,
A.
,
Monetelone
,
G.
, and
Yuan
,
X. Z.
,
2009
, “
An Air-Cooled Proton Exchange Membrane Fuel Cell With Combined Oxidant and Coolant Flow
,”
J. Power Sources
,
188
, pp.
199
204
.10.1016/j.jpowsour.2008.11.078
10.
Barreras
,
F.
,
Lopez
,
A. M.
,
Lozano
,
A.
, and
Barranco
,
J. E.
,
2011
, “
Experimental Study of the Pressure Drop in the Cathode Side of Air-Forced Open-Cathode Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
, pp.
7612
7620
.10.1016/j.ijhydene.2011.03.149
11.
Lopez
,
A. M.
,
Barroso
,
J.
,
Roda
,
V.
,
Barranco
,
J.
,
Lozano
,
A.
, and
Barreras
,
F.
,
2012
, “
Design and Development of the Cooling System of a 2 kW Nominal Power Open-Cathode Polymer Electrolyte Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
37
, pp.
7289
7298
.10.1016/j.ijhydene.2011.11.073
12.
Sasmito
,
A. P.
,
Lum
,
K. W.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2010
, “
Computational Study of Forced Air-Convection in Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
J. Power Sources
,
195
, pp.
5550
556
3.10.1016/j.jpowsour.2010.02.083
13.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Evaluation of Various Thermal Management Strategies for Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
36
, pp.
12991
13007
.10.1016/j.ijhydene.2011.07.028
14.
Strahl
,
S.
,
Husar
,
A.
, and
Serra
,
M.
,
2011
, “
Development and Experimental Validation of a Dynamic Thermal and Water Distribution Model of an Open Cathode Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
196
, pp.
4251
4263
.10.1016/j.jpowsour.2010.10.074
15.
Sasmito
,
A. P.
,
Birgersson
,
E.
,
Lum
,
K. W.
, and
Mujumdar
,
A. S.
,
2012
, “
Fan Selection and Stack Design for Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
Renewable Energy
,
37
, pp.
325
332
.10.1016/j.renene.2011.06.037
16.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2012
, “
A Novel Flow Reversal Concept for Improved Thermal Management in Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Therm. Sci.
,
54
, pp.
242
252
.10.1016/j.ijthermalsci.2011.11.020
17.
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2012
, “
A Critical Review of Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
37
, pp.
2412
2429
.10.1016/j.ijhydene.2011.11.010
18.
Wen
,
C. Y.
, and
Huang
,
G. W.
,
2008
, “
Application of a Thermally Conductive Pyrolytic Graphite Sheet to Thermal Management of a PEM Fuel Cell
,”
J. Power Sources
,
178
, pp.
132
140
.10.1016/j.jpowsour.2007.12.040
19.
Wen
,
C. Y.
,
Lin
,
Y. S.
, and
Lu.
C. H.
,
2009
, “
Performance of a Proton Exchange Membrane Fuel Cell Stack With Thermally Conductive Pyrolytic Graphite Sheets for Thermal Management
,”
J. Power Sources
,
189
, pp.
1100
1105
.10.1016/j.jpowsour.2008.12.103
20.
Wen
,
C. Y.
,
Lin
,
Y. S.
,
Lu
,
C. H.
, and
Luo
,
T. W.
,
2011
, “
Thermal Management of a Proton Exchange Membrane Fuel Cell Stack With Pyrolytic Graphite Sheets and Fans Combined
,”
Int. J. Hydrogen Energy
,
36
, pp.
6082
6089
.10.1016/j.ijhydene.2011.02.052
21.
Fluckiger
,
R.
,
Tiefenauer
,
A.
,
Ruge
,
M.
,
Aebi
,
C.
,
Wokaun
,
A.
, and
Buchi
,
F. N.
,
2007
, “
Thermal Analysis and Optimization of a Portable Edge-Air-Cooled PEFC Stack
,”
J. Power Sources
,
172
, pp.
324
333
.10.1016/j.jpowsour.2007.05.079
22.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Investigation of Liquid Water Cooling for a Proton Exchange Membrane Fuel Cell Stack
,”
Heat Transfer Eng.
,
32
, pp.
151
167
.10.1080/01457631003769302
24.
Heinzel
,
A.
,
Mahlendorf
,
F.
, and
Jansen
,
C.
,
2009
, “
Bipolar Plates
,”
Fuel Cells—Proton-Exchange Membrane Fuel Cells
,
Elsevier
,
New York
.
You do not currently have access to this content.