This paper reports a new study where radiation effects are studied in details in an SOFC stack. The 3D model used includes and couples fluid dynamics, electrochemistry, electrical conduction, diffusion, and heat transfer physics. The model was built using in-house experimental voltage-current density data for validation purposes. The objective of this study is to understand the effects of radiation in the flow channels of SOFC stacks. Both gas radiation and surface-to-surface heat exchange are considered. This study indicates that gas radiation is negligible when compared to surface-to-surface heat exchange. It is also found that surface-to-surface heat exchange cannot be neglected and actually provides a more uniform temperature distribution along the SOFC stack. Heat transfer via convection is also significant and should be included when modeling similar situations. Finally, the model indicates that viscous dissipation is a negligible source of heat generation.

References

1.
Singhal
,
S. C.
, and
Kendall
,
K.
, eds.,
2003
,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
New York
.
2.
Singhal
,
S. C.
,
2002
, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
,
152–153
, pp.
405
410
.10.1016/S0167-2738(02)00349-1
3.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnewc
,
G.
,
2004
, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng. J.
,
102
, pp.
61
69
.10.1016/j.cej.2004.02.005
4.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
,
2005
, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
, pp.
A2427
A2440
.10.1149/1.2116607
5.
Zhu
,
H.
, and
Kee
,
R. J.
,
2007
, “
The Influence of Current Collection on the Performance of Tubular Anode-Supported SOFC Cells
,”
J. Power Sources
,
169
, pp.
315
326
.10.1016/j.jpowsour.2007.03.047
6.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
, pp.
130
140
.10.1016/S0378-7753(00)00556-5
7.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2007
, “
Parametric Study of Solid Oxide Fuel Cell Performance
,”
Energy Convers. Manage.
,
48
, pp.
1525
1535
.10.1016/j.enconman.2006.11.016
8.
Murthy
,
S.
, and
Fedorov
,
A. G.
,
2003
, “
Radiation Heat Transfer Analysis of the Monolith Type Solid Oxide Fuel Cell
,”
J. Power Sources
,
124
, pp.
453
458
.10.1016/S0378-7753(03)00732-8
9.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
,
2004
, “
A Numerical Study of Cell-To-Cell Variations in a SOFC Stack
,”
J. Power Sources
,
126
, pp.
76
87
.10.1016/j.jpowsour.2003.08.034
10.
DiGiuseppe
,
G.
,
Gowda
,
Y. J.
, and
Honnagondanahalli
,
N. K.
,
2011
, “
A 2D Modeling Study of a Planar SOFC Using Actual Cell Testing Geometry and Operating Conditions
,”
J. Fuel Cell Sci. Technol.
,
9
, p.
011016
.10.1115/1.4005124
11.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
12.
Kakaç
,
S.
,
Pramuanjaroenkij
,
A.
, and
Zhou
,
X. Y.
,
2007
, “
A Review of Numerical Modeling of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
32
, pp.
761
786
.10.1016/j.ijhydene.2006.11.028
13.
Chase
,
M. W.
,
1998
,
JANAF Thermochemical Tables
, 4th ed., J. Phys. Chem. Ref. Data, Monograph 9,
Gaithersburg, MD
.
14.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
, 5th ed.,
John Wiley & Sons
,
New York
.
15.
Damm
,
D. L.
, and
Fedorov
,
A. G.
,
2005
, “
Radiation Heat Transfer in SOFC Materials and Components
,”
J. Power Sources
,
143
, pp.
158
165
.10.1016/j.jpowsour.2004.11.063
16.
Bossel
,
U. G.
,
1992
, “
Final Report on SOFC Data: Facts and Figures
,” International Energy Agency, Swiss Federal Office of Energy, Operating Agent Task II, Berne, Switzerland.
17.
Tao
,
Y.
,
Nishino
,
H.
,
Ashidate
,
S.
,
Kokubo
,
H.
,
Watanabe
,
M.
, and
Uchida
,
H.
,
2009
, “
Polarization Properties of La0.6Sr0.4Co0.2Fe0.8O3-Based Double Layer-Type Oxygen Electrodes for Reversible SOFCs
,”
Electrochim. Acta
,
54
, pp.
3309
3315
.10.1016/j.electacta.2008.12.048
18.
Steele
,
B. C. H.
,
2000
, “
Appraisal of Ce1-yGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500 °C
,”
Solid State Ionics
,
129
, pp.
95
110
.10.1016/S0167-2738(99)00319-7
You do not currently have access to this content.