A two-dimensional multicomponent lattice Boltzmann (LB) model based on kinetic theory for gas mixtures combined with a representative elementary volume (REV) scale LB algorithm based on the Brinkman equation for flows in porous media is developed to simulate the mass transport in the porous anode and cathode of solid oxide fuel cell (SOFC). The concentration overpotential is calculated and compared with that obtained by the extended Fick's model (FM), the dusty gas model (DGM), and the Stefan Maxwell model (SMM), as well as the experimental results. It is concluded that LB method is a much more accurate method for the simulation of mass transfer within fuel cell electrodes. Moreover, the effects of different electrode geometrical and operating parameters on concentration polarization are also investigated.

References

1.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1–2
), pp.
130
140
.10.1016/S0378-7753(00)00556-5
2.
Joshi
,
A. S.
,
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2007
, “
Lattice Boltzmann Modeling of 2D Gas Transport in a Solid Oxide Fuel Cell Anode
,”
J. Power Sources
,
164
(
2
), pp.
631
638
.10.1016/j.jpowsour.2006.10.101
3.
Chiu
,
W. K. S.
,
Joshi
,
A. S.
, and
Grew
,
K. N.
,
2009
, “
Lattice Boltzmann Model for Multi-Component Mass Transfer in a Solid Oxide Fuel Cell Anode With Heterogeneous Internal Reformation and Electrochemistry
,”
Eur. Phys. J. Spec. Top.
,
171
, pp.
159
165
.10.1140/epjst/e2009-01024-8
4.
Grew
,
K. N.
,
Joshi
,
A. S.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2010
, “
Pore-Scale Investigation of Mass Transport and Electrochemistry in a Solid Oxide Fuel Cell Anode
,”
J. Power Sources
,
195
(
8
), pp.
2331
2345
.10.1016/j.jpowsour.2009.10.067
5.
Joshi
,
A. S.
,
Grew
,
K. N.
,
Izzo
,
J. R.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2010
, “
Lattice Boltzmann Modeling of Three-Dimensional, Multicomponent Mass Diffusion in a Solid Oxide Fuel Cell Anode
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
1
), p.
011006
.10.1115/1.3117251
6.
Suzue
,
Y.
,
Shikazono
,
N.
, and
Kasagi
,
N.
,
2008
, “
Micro Modeling of Solid Oxide Fuel Cell Anode Based on Stochastic Reconstruction
,”
J. Power Sources
,
184
(
1
), pp.
52
59
.10.1016/j.jpowsour.2008.06.029
7.
Asinari
,
P.
,
Quaglia
,
M. C.
,
von Spakovsky
,
M. R.
, and
Kasula
,
B. V.
,
2006
, “
Numerical Simulations of Reactive Mixture Flow in the Anode Layer of Solid Oxide Fuel Cells by the Lattice Boltzmann Method
,”
Proc. 8th Biennial ASME Conference on Engineering Systems Design and Analysis
,
Torino, Italy
, July 4–7,
ASME
Paper No. ESDA2006-95738, pp.
221
235
. 10.1115/ESDA2006-95738
8.
Martys
,
N. S.
, and
Chen
,
H.
,
1996
, “
Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method
,”
Phys. Rev. E
,
53
(
1
), pp.
743
750
.10.1103/PhysRevE.53.743
9.
Spaid
,
M. A. A.
, and
Phelan
,
F. R.
,
1997
, “
Lattice Boltzmann Methods for Modeling Microscale Flow in Fibrous Porous Media
,”
Phys. Fluids
,
9
(
9
), pp.
2468
2474
.10.1063/1.869392
10.
Spaid
,
M. A. A.
, and
Phelan
,
F. R.
,
1998
, “
Modeling Void Formation Dynamics in Fibrous Porous Media With the Lattice Boltzmann Method
,”
Composites, Part A
,
29
(
7
), pp.
749
755
.10.1016/S1359-835X(98)00031-1
11.
Park
,
J.
,
Matsubara
,
M.
, and
Li
,
X.
,
2007
, “
Application of Lattice Boltzmann Method to a Micro-Scale Flow Simulation in the Porous Electrode of a PEM Fuel Cell
,”
J. Power Sources
,
173
(
1
), pp.
404
414
.10.1016/j.jpowsour.2007.04.021
12.
Lu
,
Q.
, and
Huang
,
G.
,
2009
, “
A Simulation of Gas Migration in Heterogeneous Goaf of Fully Mechanized Coal Caving Mining Face Based on Multi-Components LBM
,”
International Conference on Environmental Science and Information Application Technology
,
Wuhan, China
, July 4–5, pp.
531
534
. 10.1109/ESIAT.2009.48
13.
Delavar
,
M. A.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2010
, “
Numerical Simulation of Direct Methanol Fuel Cells Using Lattice Boltzmann Method
,”
Int. J. Hydrogen Energy
,
35
(
17
), pp.
9306
9317
.10.1016/j.ijhydene.2010.02.126
14.
He
,
Y. L.
,
Wang
,
Y.
, and
Li
,
Q.
,
2009
,
Lattice Boltzmann Method: Theory and Applications
,
Science Press
,
Beijing
, pp.
57
61
(in Chinese).
15.
Luo
,
L.
, and
Girimaji
,
S. S.
,
2003
, “
Theory of the Lattice Boltzmann Method: Two-Fluid Model for Binary Mixtures
,”
Phys. Rev. E
,
67
(
3
), p.
036302
.10.1103/PhysRevE.67.036302
16.
Sirovich
,
L.
,
1962
, “
Kinetic Modeling of Gas Mixtures
,”
Phys. Fluids
,
5
(
8
), pp.
908
918
.10.1063/1.1706706
17.
McCracken
,
M. E.
, and
Abraham
,
J.
,
2005
, “
Lattice Boltzmann Methods for Binary Mixtures With Different Molecular Weights
,”
Phys. Rev. E
,
71
(
4
), p.
046704
.10.1103/PhysRevE.71.046704
18.
Joshi
,
A. S.
,
Peracchio
,
A. A.
,
Grew
,
K. N.
, and
Chiu
,
W. K. S.
,
2007
, “
Lattice Boltzmann Method for Continuum, Multi-Component Mass Diffusion in Complex 2D Geometries
,”
J. Phys. D: Appl. Phys.
,
40
(
9
), pp.
2961
2971
.10.1088/0022-3727/40/9/044
19.
Guo
,
Z. L.
,
Zheng
,
C. G.
, and
Shi
,
B. C.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
65
(
4
), p.
046308
.10.1103/PhysRevE.65.046308
20.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Clarendon Press
,
Oxford, UK
.
21.
Guo
,
Z. L.
,
Zheng
,
C. G.
, and
Shi
,
B. C.
,
2002
, “
Non-Equilibrium Extrapolation Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method
,”
Chin. Phys.
,
11
(
4
), pp.
366
374
.10.1088/1009-1963/11/4/310
22.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
,
2000
, “
Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
,
86
(
1–2
), pp.
423
431
.10.1016/S0378-7753(99)00444-9
23.
Suwanwarangkul
,
R.
,
Croiset
,
E.
,
Fowler
,
M. W.
,
Douglas
,
P. L.
,
Entchev
,
E.
, and
Douglas
,
M. A.
,
2003
, “
Performance Comparison of Fick's, Dusty-Gas and Stefan–Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
,
122
(
1
), pp.
9
18
.10.1016/S0378-7753(02)00724-3
24.
Krishna
,
R.
, and
Van Baten
,
J. M.
,
2012
, “
Investigating the Validity of the Bosanquet Formula for Estimation of Diffusivities in Mesopores
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
684
688
.10.1016/j.ces.2011.11.026
25.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2007
, “
Parametric Study of Solid Oxide Fuel Cell Performance
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1525
1535
.10.1016/j.enconman.2006.11.016
You do not currently have access to this content.