Carbon deposits are the most probable mode of deactivation for solid oxide fuel cell (SOFCs) using methane or higher hydrocarbons as fuel. The deposition of various carbon allotropes on the anode material was studied under dynamic and isothermal conditions. The results show methane dissociation on Ni-YSZ (nickel-yttrium stabilized zirconia) under the temperature-programmed mode in three general steps. Under isothermal conditions, various carbon species formed depending on the temperature. The presence of amorphous, filamentous, pyrolitic, and graphitic carbon allotropes was determined by quadrupole mass spectroscopy (QMS), X-ray crystallography, field emission scanning electron microscopy (FE-SEM), and infrared spectroscopy (IR). Carbon allotropes were subsequently oxidized in the atmosphere with 20.0 vol% and 0.5 vol% of oxygen in argon. Complex oxidation mechanisms were detected and discussed.

References

1.
Rostrup-Nielsen
,
J. R.
,
1997
, “
Industrial Relevance of Coking
,”
Catal. Today
,
37
, pp.
225
232
.10.1016/S0920-5861(97)00016-3
2.
Trimm
,
D. L.
,
1999
, “
Catalysis for the Control of Coking During Steam Reforming
,”
Catal. Today
,
49
, pp.
3
10
.10.1016/S0920-5861(98)00401-5
3.
Rostrup-Nielsen
,
J. R.
,
2000
, “
New Aspects of Syngas Production and Use
,”
Catal. Today
,
63
, pp.
159
164
.10.1016/S0920-5861(00)00455-7
4.
Bartholomew
,
C.
,
2001
, “
Mechanisms of Catalyst Deactivation
,”
Appl. Catal. A.
,
212
, pp.
17
60
.10.1016/S0926-860X(00)00843-7
5.
Menon
,
P. G.
,
1990
, “
Coke on Catalysts-Harmful, Harmless, Invisible and Beneficial Types
,”
J. Mol. Catal.
,
59
(
2
), pp.
207
220
.10.1016/0304-5102(90)85053-K
6.
Gorte
,
R. J.
, and
Vohs
,
J. M.
,
2003
, “
Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbons
,”
J. Catal.
,
216
, pp.
477
486
.10.1016/S0021-9517(02)00121-5
7.
Ke
,
K.
,
Gunji
,
A.
,
Mori
,
H.
,
Tsuchida
,
S.
,
Takahashi
,
H.
,
Ukai
,
K.
,
Mizutani
,
Y.
,
Sumi
,
H.
,
Yokoyama
,
M.
, and
Waki
,
K.
,
2006
, “
Effect of Oxide on Carbon Deposition Behavior of CH4 Fuel on Ni/ScSZ Cermet Anode in High Temperature SOFCs
,”
Solid State Ionics
,
177
, pp.
541
547
.10.1016/j.ssi.2005.12.009
8.
Kharlamova
,
T.
,
Pavlova
,
S.
,
Sadykov
,
V.
,
Krieger
,
T.
,
Alikina
,
G.
, and
Argirusis
,
C.
,
2009
, “
Catalytic Properties and Coking Stability of New Anode Materials for Internal Methane Reforming in the Intermediate Temperature Solid Oxide Fuel Cells
,”
Catal. Today
,
146
, pp.
141
147
.10.1016/j.cattod.2009.01.052
9.
Mermelstein
,
J.
,
Millan
,
M.
, and
Brandon
,
N.
,
2010
, “
The Impact of Steam and Current Density on Carbon Formation from Biomass Gasification Tar on Ni/YSZ, and Ni/CGO Solid Oxide Fuel Cell Anodes
,”
J. Power Sources
,
195
, pp.
1657
1666
.10.1016/j.jpowsour.2009.09.046
10.
Takeguchi
,
T.
,
Kani
,
Y.
,
Yano
,
T.
,
Kikuchi
,
R.
,
Eguchi
,
K.
,
Tsujimoto
,
K.
,
Uchida
,
Y.
,
Ueno
,
A.
,
Omoshiki
,
K.
, and
Aizawa
,
M.
,
2002
, “
Study on Steam Reforming of CH4 and C2 Hydrocarbons and Carbon Deposition on Ni-YSZ Cermets
,”
J. Power Sources
,
112
, pp.
588
595
.10.1016/S0378-7753(02)00471-8
11.
Borowiecki
,
T.
,
Giecko
,
G.
, and
Panczyk
,
M.
,
2002
, “
Effects of Small MoO3 Additions on the Properties of Nickel Catalysts for the Steam Reforming of Hydrocarbons: II. Ni-Mo/Al2O3 Catalysts in Reforming, Hydrogenolysis and Cracking of N-Butane
,”
Appl. Catal. A.
,
230
, pp.
85
97
.10.1016/S0926-860X(01)00997-8
12.
Takeguchi
,
T.
,
Kikuchi
,
R.
,
Yano
,
T.
,
Eguchi
,
K.
, and
Murata
,
K.
,
2003
, “
Effect of Precious Metal Addition to Ni-YSZ Cermet on Reforming of CH4 and Electrochemical Activity as SOFC Anode
,”
Catal. Today
,
84
, pp.
217
222
.10.1016/S0920-5861(03)00278-5
13.
Boder
,
M.
, and
Dittmeyer
,
R.
,
2006
, “
Catalytic Modification of Conventional SOFC Anodes With a View to Reducing Their Activity for Direct Internal Reforming of Natural Gas
,”
J. Power Sources
,
155
, pp.
13
22
.10.1016/j.jpowsour.2004.11.075
14.
Triantafyllopoulos
,
N. C.
, and
Neophytides
,
S. G.
,
2006
, “
Dissociative Adsorption of CH4 on NiAu/YSZ: The Nature of Adsorbed Carbonaceous Species and the Inhibition of Graphitic C Formation
,”
J. Catal.
,
239
, pp.
187
199
.10.1016/j.jcat.2006.01.021
15.
Bellido
,
J. D. A.
,
De Souza
,
J. E.
,
M'Peko
,
J.-C.
, and
Assaf
,
E. M.
,
2009
, “
Effect of Adding CaO to ZrO2 Support on Nickel Catalyst Activity in Dry Reforming of Methane
,”
Appl. Catal. A.
,
358
, pp.
215
223
.10.1016/j.apcata.2009.02.014
16.
Triantafyllopoulos
,
N. C.
, and
Neophytides
,
S. G.
,
2003
, “
The Nature and Binding Strength of Carbon Adspecies Formed During the Equilibrium Dissociative Adsorption of CH4 on Ni-YSZ Cermet Catalysts
,”
J. Catal.
,
217
(
2
), pp.
324
333
. 10.1016/S0021-9517(03)00062-9
17.
Finnerty
,
C. M.
,
Coe
,
N. J.
,
Cunningham
,
R. H.
, and
Ormerod
,
R. M.
,
1998
, “
Carbon Formation on and Deactivation of Nickel-Based/Zerconia Anodes in Solid Oxide Fuel Cells Running on Methane
,”
Catal. Today
,
46
, pp.
137
145
.10.1016/S0920-5861(98)00335-6
18.
Alzate-Restrepo
,
V.
, and
Hill
,
J. M.
,
2008
, “
Effect of Anodic Polarization on Carbon Deposition on Ni/YSZ Anodes Exposed to Methane
,”
Appl. Catal. A.
,
342
, pp.
49
55
.10.1016/j.apcata.2007.12.039
19.
Finnerty
,
C. M.
, and
Ormerod
,
R. M.
,
2000
, “
Internal Reforming over Nickel/Zirconia Anodes in SOFCS Operating on Methane: Influence of Anode Formulation, Pre-Treatment and Operating Conditions
,”
J. Power Sources
,
86
, pp.
390
394
.10.1016/S0378-7753(99)00498-X
20.
He
,
H.
, and
Hill
,
J. M.
,
2007
, “
Carbon Deposition on Ni/YSZ Composites Exposed to Humidified Methane
,”
Appl. Catal. A.
,
317
, pp.
284
292
.10.1016/j.apcata.2006.10.040
21.
Sadykov
,
V.
,
Mezentseva
,
N.
,
Alikina
,
G.
,
Bunina
,
R.
,
Rogov
,
V.
,
Krieger
,
T.
,
Belochapkine
,
S.
, and
Ross
,
J.
,
2009
, “
Composite Catalytic Materials for Steam Reforming of Methane and Oxygenates: Combinatorial Synthesis, Characterization and Performance
,”
Catal. Today
,
145
, pp.
127
137
.10.1016/j.cattod.2008.04.034
22.
Nikooyeh
,
K.
,
Clemmer
,
R.
,
Alzate-Restrepo
,
V.
, and
Hill
,
J. M.
,
2008
, “
Effect of Hydrogen on Carbon Formation on Ni/YSZ Composites Exposed to Methane
,”
Appl. Catal. A.
,
347
, pp.
106
111
.10.1016/j.apcata.2008.06.005
23.
Kim
,
T.
,
Liu
,
G.
,
Boaro
,
M.
,
Lee
,
S.-I.
,
Vohs
,
J. M.
,
Gorte
,
R. J.
,
Al-Madhi
,
O. H.
, and
Dabbousi
,
B. O.
,
2006
, “
A Study of Carbon Formation and Prevention in Hydrocarbon-Fueled SOFC
,”
J. Power Sources
,
155
, pp.
231
238
.10.1016/j.jpowsour.2005.05.001
24.
Maček
,
J.
,
Novosel
,
B.
, and
Marinšek
,
M.
,
2007
, “
Ni–YSZ SOFC Anodes—Minimization of Carbon Deposition
,”
J. Eur. Ceram. Soc.
,
27
, pp.
487
491
.10.1016/j.jeurceramsoc.2006.04.107
25.
Zhang
,
Y.
,
Liu
,
B.
,
Tu
,
B.
,
Dong
,
Y.
, and
Cheng
,
M.
,
2005
, “
Redox Cycling of Ni–YSZ Anode Investigated by TPR Technique
,”
Solid State Ionics
,
176
, pp.
2193
2199
.10.1016/j.ssi.2005.06.016
26.
Wang
,
Y.
,
Wang
,
W.
,
Hong
,
X.
,
Li
,
Y.
, and
Zhang
,
Z.
,
2009
, “
Yttrium-Stabilized Zirconia-Promoted Metallic Nickel Catalysts for the Partial Oxidation of Methane to Hydrogen
,”
Int. J. Hydrogen Energy
,
34
, pp.
2252
2259
.10.1016/j.ijhydene.2008.12.084
27.
Martins
,
R. F.
,
Brant
,
M. C.
,
Domingues
,
R. Z.
,
Paniago
,
R. M.
,
Sapag
,
K.
, and
Matencio
,
T.
,
2009
, “
Synthesis and Characterization of NiO-YSZ for SOFCs
,”
Mater. Res. Bull.
,
44
, pp.
451
456
.10.1016/j.materresbull.2008.04.017
28.
Eguchi
,
K.
,
Tanaka
,
K.
,
Matsui
,
T.
, and
Kikuchi
,
R.
,
2009
, “
Reforming Activity and Carbon Deposition on Cermet Catalysts for Fuel Electrodes of Solid Oxide Fuel Cells
,”
Catal. Today
,
146
, pp.
154
159
.10.1016/j.cattod.2009.01.033
29.
Ribeiro
,
N. F. P.
,
Souza
,
M. M. V. M.
,
Macedo Neto
,
O. R.
,
Vasconcelos
,
S. M. R.
, and
Schmal
,
M.
,
2009
, “
Investigating the Microstructure and Catalytic Properties of Ni/YSZ Cermets as Anodes for SOFC Applications
,”
Appl. Catal. A.
,
353
, pp.
305
309
.10.1016/j.apcata.2008.11.004
30.
Numaguchi
,
T.
, and
Kikuchi
,
K.
,
1991
, “
Deactivation of Bimodal Nickel Catalyst for Steam Methane Reforming Reaction
,”
Ind. Eng. Chem. Res.
,
30
, pp.
447
453
.10.1021/ie00051a003
31.
Čermák
,
J.
, and
Mehrer
,
H.
,
1994
, “
Tracer Diffusion of 14C in Austenitic Ni-Fe-Cr Alloys
,”
Acta Metall. Mater.
,
42
, pp.
1345
1350
.10.1016/0956-7151(94)90151-1
32.
Lander
,
J. J.
,
Kern
,
H. E.
, and
Beach
,
A. L.
,
1952
, “
Solubility and Diffusion Coefficient of Carbon in Nickel
,”
J. Appl. Phys.
,
23
, pp.
1305
1309
.10.1063/1.1702064
33.
Arutyunov
,
V. S.
, and
Krylov
,
O. V.
,
2005
, “
Oxidative Conversion of Methane
,”
Russ. Chem. Rev.
,
74
, pp.
1111
1137
.10.1070/RC2005v074n12ABEH001199
34.
Moshkalyov
,
S. A.
,
Moreau
,
A. L. D.
,
Guttiérrez
,
H. R.
,
Cotta
,
M. A.
, and
Swart
,
J. W.
,
2004
, “
Carbon Nanotubes Growth by Chemical Vapor Deposition Using Thin Film Nickel Catalyst
,”
Mater. Sci. Eng.
, B,
112
, pp.
147
153
.10.1016/j.mseb.2004.05.038
35.
Keep
,
C. W.
,
Baker
,
R. T. K.
, and
France
,
J. A.
,
1977
, “
Origin of Filamentous Carbon Formation From the Reaction of Propane Over Nickel
,”
J. Catal.
,
47
, pp.
232
238
.10.1016/0021-9517(77)90170-1
36.
Helveg
,
S.
,
López-Cartes
,
C.
,
Sehested
,
J.
,
Hansen
,
P. L.
,
Clausen
,
B. S.
,
Rostrup-Nielsen
,
J., R.
Abild-Pedersen
,
F.
, and
Nørskov
,
J. K.
,
2004
, “
Atomic-Scale Imaging of Carbon Nanofibre Growth
,”
Nature
,
427
, pp.
426
429
.10.1038/nature02278
37.
Kukovitsky
,
E. F.
,
L'vov
,
S. G.
,
Sainov
,
N. A.
, and
Shustov
,
V. A.
,
2003
, “
CVD Growth of Carbon Nanotube Films on Nickel Substrates
,”
Appl. Surface Sci.
,
215
, pp.
201
208
.10.1016/S0169-4332(03)00280-0
38.
Sato
,
S.
,
Kawabata
,
A.
,
Nihei
,
M.
, and
Awano
,
Y.
,
2003
, “
Growth of Diameter-Controlled Carbon Nanotubes Using Monodisperse Nickel Nanoparticles Obtained With a Differential Mobility Analyzer
,”
Chem. Phys. Lett.
,
382
, pp.
361
366
.10.1016/j.cplett.2003.10.076
39.
Snoeck
,
J.-W.
,
Froment
,
G. F.
, and
Fowles
,
M.
,
1997
, “
Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-State Growth
,”
J. Catal.
,
169
, pp.
240
249
.10.1006/jcat.1997.1634
40.
Chen
,
T.
,
Wang
,
W. G.
,
Miao
,
H.
, and
Xu
,
C.
,
2011
, “
Evaluation of Carbon Deposition Behavior on the Nickel/Yttrium-Stabilized Zirconia Anode–Supported Fuel Cell Fueled With Simulated Syngas
,”
J. Power Sources
,
196
, pp.
2461
2468
.10.1016/j.jpowsour.2010.11.095
41.
Sumi
,
H.
,
Puengjinda
,
P.
,
Muroyama
,
H.
,
Matsui
,
T.
, and
Eguchi
,
K.
,
2011
, “
Effects of Crystal Structure of Yttria- and Scandia-Stabilized Zirconia in Nickel-Based SOFC Anodes on Carbon Deposition and Oxidation Behavior
,”
J. Power Sources
,
196
, pp.
6048
6054
.10.1016/j.jpowsour.2011.03.092
42.
Silverstein
,
R. M.
,
Bassler
,
G. C.
, and
Morill
,
T. C.
,
1991
,
Spectrometric Identification of Organic Compounds
, 5th ed.,
J. Wiley & Sons
,
New York
, pp.
102
108
.
43.
Trucano
,
P.
,
Chen
,
R.
,
1975
, “
Structure of Graphite by Neutron Diffraction
,”
Nature
,
258
, pp.
136
137
. 10.1038/258136a0
44.
NETZSCH
,
2008
,
Peak Separation for MS® Windows
, Selb, Ver. 2008.05.
45.
Kruger
,
A.
,
2010
,
Carbon Materials and Nanotechnology
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
, pp.
15
.
46.
Buccheri
,
M. A.
,
Singh
,
A.
, and
Hill
,
J. M.
,
2011
, “
Anode- Versus Electrolyte-Supported Ni-YSZ/YSZ/Pt SOFCs: Effect of Cell Design on OCV, Performance and Carbon Formation for the Direct Utilization of Dry Methane
,”
J. Power Sources
,
196
, pp.
968
976
.10.1016/j.jpowsour.2010.08.073
You do not currently have access to this content.