New technologies for efficient operation of fuel cells require modern techniques in system modeling. Such fuel cell models do not require giving any information about physical mechanisms or internal states of the system. They must be rather precise and should consume less computing time. From the point of view of system theory, polymer electrolyte membrane fuel cells (PEMFC) are multiple input and single output (MISO) systems. The inputs of a fuel cell are the drawn current, the gas pressures at anode and cathode side, and the humidity of these gases which influence the system output, namely the cell voltage, in a nonlinear way. The state of the art in the industry is to describe such nonlinear systems by the usage of lookup tables with a large amount of data. An alternative way to model the input-output behavior of nonlinear systems is the usage of so called black-box and gray-box model approaches. In the last decade, artificial neuronal networks (ANN) became more popular in black-box modeling of nonlinear systems with multiple inputs. Further, if some of the internal processes of a nonlinear system can be mathematically described, a gray-box model is more preferred. In the first part of this paper, the suitability of ANN's in the form of a multilayer perceptron (MLP) network with different numbers of hidden neurons is investigated. A way to confirm the validity for the identified network was worked out. In the second part of this contribution, a gray-box model, valid for a large operating area, based on published semi-empirical models is introduced. Six experimental campaigns for parameter identification and model validation were carried out. The five inputs previously described were varied in a wide range to cover a large operating range. In the last part of this paper, both modeling approaches are investigated with respect to their ability to identify model parameters using a limited number of experimental data.

References

References
1.
Guzzella
,
L.
, and
Sciarretta
,
A.
,
2005
,
Vehicle Propulsion Systems Introduction to Modeling and Optimization
,
Springer
,
Berlin/Heidelberg
.
2.
Larmine
,
J.
, and
Dicks
,
A.
,
2005
,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York.
3.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper
,
M. A. I.
, and
Jensen
,
H. M.
,
2000
, “
Development and Application of a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
,
86
, pp.
173
180
.10.1016/S0378-7753(99)00484-X
4.
Nitsche
,
C.
,
Pucher
,
E.
,
Weiss
,
W.
, and
Schroedl
,
S.
,
2005
, “
Rapid (Practical) Methodology for Creation of Fuel Cell Systems Models With Scaleable Complexity
,”
J. Power Sources
,
145
, pp.
383
391
.10.1016/j.jpowsour.2005.02.055
5.
Balabin
,
R. M.
, and
Lomakina
,
E. I.
,
2011
, “
Support Vector Machine Regression (LS-SVM)—An Alternative to Artificial Neural Networks (ANNs) for the Analysis of Quantum Chemistry Data?
,”
Phys. Chem. Chem. Phys.
,
13
, pp.
11710
11718
.10.1039/c1cp00051a
6.
Balabin
,
R. M.
, and
Lomakina
,
E. I.
,
2009
, “
Neural Network Approach to Quantum-Chemistry Data: Accurate Prediction of Density Functional Theory Energies
,”
J. Chem. Phys.
,
131
,
074104
.10.1063/1.3206326
7.
Michael
,
A. A.
,
1998
,
The Handbook of Brain Theory and Neural Networks
,
MIT Press
,
Cambridge, MA
.
8.
Lee
,
Y. W.
,
Park
,
G. G.
,
Yang
,
T. H.
,
Yoon
,
Y. G.
, and
Kim
,
C. S.
,
2004
, “
Empirical Modeling of Polymer Electrolyte Membrane Fuel Cell Performance Using Artificial Neural Networks
,”
J. Hydrogen Energy
,
29
, pp.
961
966
.10.1016/j.ijhydene.2003.01.002
9.
Sun
,
T.
,
Cao
,
G.
, and
Zhu
,
X.
,
2005
, “
Nonlinear Modeling of PEMFC Based on Neural Networks Identification
,”
J. Zhejiang Unvi., Sci.
,
6
, pp.
365
370
.10.1631/jzus.2005.A0365
10.
Kim
,
J.
,
Lee
S.-M.
,
Srinivasan
,
S.
, and
Chamberlin
,
C. E.
,
1995
, “
Modeling of Proton Exchange Membrane Fuel Cell Performance With an Empirical Equation
,”
J. Electrochem. Soc.
,
142
(
8
), pp.
2670
2674
.10.1149/1.2050072
11.
Squadrito
,
G.
,
Maggio
,
G.
,
Passalaqua
,
E.
,
Lufrano
,
F.
, and
Patti
,
A.
,
1999
, “
An Empirical Equation for Polymer Electrolyte Fuel Cell (PEFC) Behaviour
,”
J. Appl. Electrochem.
,
29
, pp.
1449
1455
.10.1023/A:1003890219394
12.
Lee
,
J.
, and
Lalk
,
T.
,
1998
, “
Modeling Fuel Cell Stack Systems
,”
J. Power Sources
,
73
, pp.
229
241
.10.1016/S0378-7753(97)02812-7
13.
Amphlett
,
J.
,
Mann
,
R.
,
Peppley
,
B.
,
Roberge
,
P.
, and
Rodrigues
,
A.
,
1996
, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
61
, pp.
183
188
.10.1016/S0378-7753(96)02360-9
14.
Buchholz
,
M.
, and
Krebs
,
V.
, 2007, “
Dynamic Modeling of a Polymer Electrolyte Membrane Fuel Cell Stack by Nonlinear System Identification,
Fuel Cells
, 7(5), pp. 392–401. 10.1002/fuce.200700013
15.
Ogburn
,
M. J.
,
2000
, “
Systems Integration, Modeling, and Validation of a Fuel Cell Hybrid Electric Vehicle
,” M.S.c. thesis, Virginia State University, Petersberg, VA.
16.
Meiler
,
M.
,
Schmid
,
O.
,
Schudy
,
M.
, and
Hofer
,
E. P.
,
2008
, “
Dynamic Fuel Cell Stack Model for Real-Time Simulation Based on System Identification
,”
J. Power Sources
,
176
, pp.
523
528
.10.1016/j.jpowsour.2007.08.051
17.
Ljung
,
L.
,
1999
,
System Identification
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Kurzweil
,
P.
,
1999
,
Brennstoffzellentechnik
,
Vieweg
,
Germany
.
19.
Dong
,
Z.
,
Secanell
,
M.
, and
Wishart
,
J.
,
2005
, “
Optimization of a Fuel Cell System Based on Empirical Data of a PEM Fuel Cell Stack and the Generalized Electrochemical Model
,”
Proceedings of the Interntional Green Energy Conference
,
Waterloo, ON, Canada
, June 12–16.
20.
Schudy
,
M.
,
2004
, “
Einfluss Thermo- und Hydrodynamischer Parameter und des Zelldesigns auf den Energie- und Stofftransport in PEM-Brennstoffzellen
,” Ph.D. thesis, University of Darmstadt, Darmstadt, Germany.
21.
Heller
,
C.
,
2003
, “
Design von PEM-Brennstoffzellen und dessen Auswirkungen auf Wirkungsgrad und Komplexität von Subsystemen
,” Ph.D. thesis, University of Bayreuth, Bayreuth, Germany.
You do not currently have access to this content.