A constructive critique and a suite of proposed improvements for a recent one-dimensional semianalytical model of a direct methanol fuel cell are presented for the purpose of improving the predictive ability of the modeling approach. The model produces a polarization curve for a fuel cell system comprised of a single membrane-electrode assembly, based on a semianalytical one-dimensional solution of the steady-state methanol concentration profile across relevant layers of the membrane electrode assembly. The first improvement proposed is a more precise numerical solution method for an implicit equation that describes the overall current density, leading to better convergence properties. A second improvement is a new technique for identifying the maximum achievable current density, an important piece of information necessary to avoid divergence of the implicit-equation solver. Third, a modeling improvement is introduced through the adoption of a linear ion-conductivity model that enhances the ability to better match experimental polarization-curve data at high current densities. Fourth, a systematic method is advanced for extracting anodic and cathodic transfer-coefficient parameters from experimental data via a least-squares regression procedure, eliminating a potentially significant parameter estimation error. Finally, this study determines that the methanol concentration boundary condition imposed on the membrane side of the membrane-cathode interface plays a critical role in the model’s ability to predict the limiting current density. Furthermore, the study argues for the need to carry out additional experimental work to identify more meaningful boundary concentration values realized by the cell.

References

References
1.
Dyer
,
C.
,
2002
, “
Fuel Cells for Portable Applications
,”
J. Power Sources
,
106
(
1
), pp.
31
34
.10.1016/S0378-7753(01)01069-2
2.
Heinzel
,
A.
, and
Barragán
,
V. M.
,
1999
, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
,
84
(
1
), pp.
70
74
.10.1016/S0378-7753(99)00302-X
3.
Scott
,
K.
,
Taama
,
W. M.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K.
,
1999
, “
The Impact of Mass Transport and Methanol Crossover on the Direct Methanol Fuel Cell
,”
J. Power Sources
,
83
(
1
), pp.
204
216
.10.1016/S0378-7753(99)00303-1
4.
Gurau
,
B.
, and
Smotkin
,
E. S.
,
2002
, “
Methanol Crossover in Direct Methanol Fuel Cells: A Link Between Power and Energy Density
,”
J. Power Sources
,
112
(
2
), pp.
339
352
.10.1016/S0378-7753(02)00445-7
5.
Yao
,
K.
,
Karan
,
K.
,
McAuley
,
K.
,
Oosthuizen
,
P.
,
Peppley
,
B.
, and
Xie
,
T.
,
2004
, “
Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells
,”
Fuel Cells
,
4
(
1
), pp.
3
29
.10.1002/fuce.200300004
6.
Cheddie
,
D.
, and
Munroe
,
N.
,
2005
, “
Review and Comparison of Approaches to Proton Exchange Membrane Fuel Cell Modeling
,”
J. Power Sources
,
147
(
1
), pp.
72
84
.10.1016/j.jpowsour.2005.01.003
7.
Oliveira
,
V. B.
,
Falcão
,
D. S.
,
Rangel
,
C. M.
, and
Pinto
,
A. M. F. R.
,
2007
, “
A Comparative Study of Approaches to Direct Methanol Fuel Cells Modelling
,”
Int. J. Hydrogen Energy
,
32
(
3
), pp.
415
424
.10.1016/j.ijhydene.2006.06.049
8.
Wang
,
Z.
, and
Wang
,
C.
,
2003
, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
150
(
4
), pp.
A508
A519
.10.1149/1.1559061
9.
Birgersson
,
E.
,
Nordlund
,
J.
,
Vynnycky
,
M.
,
Picard
,
C.
, and
Lindberghb
,
G.
,
2004
, “
Reduced Two-Phase Model for Analysis of the Anode of a DMFC
,”
J. Electrochem. Soc.
,
151
(
12
), pp.
A2157
A2172
.10.1149/1.1819834
10.
Danilova
,
V.
,
Lim
,
J.
,
Moona
,
I.
, and
Chang
,
H.
,
2006
, “
Three-Dimensional, Two-Phase, CFD Model for the Design of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
162
(
2
), pp.
992
1002
.10.1016/j.jpowsour.2006.07.071
11.
Yang
,
W.
, and
Zhao
,
T.
,
2007
, “
A Two-Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCS
,”
Electrochim. Acta
,
52
(
20
), pp.
6125
6140
.10.1016/j.electacta.2007.03.069
12.
Yang
,
W.
,
Zhao
,
T.
, and
Xu
,
C.
,
2007
, “
Three-Dimensional Two-Phase Mass Transport Model for Direct Methanol Fuel Cells
,”
Electrochim. Acta
,
53
(
2
), pp.
853
862
.10.1016/j.electacta.2007.07.070
13.
Divisek
,
J.
,
Fuhrmann
,
J.
,
Gartner
,
K.
, and
Jung
,
R.
,
2003
, “
Performance Modeling of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
, 150(
6
), pp.
A811
A825
.10.1149/1.1572150
14.
García
,
B.
,
Sethuraman
,
V.
,
Weidner
,
J.
, and
White
,
R.
,
2004
, “
Mathematical Model of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
1
(
1
), pp.
43
48
.10.1115/1.1782927
15.
Vera
,
M.
,
2007
, “
Single-Phase Model for Liquid-Feed DMFCS With Non-Tafel Kinetics
,”
J. Power Sources
,
171
(
2
), pp.
763
777
.10.1016/j.jpowsour.2007.05.098
16.
Kareemulla
,
D.
, and
Jayanti
,
S.
,
2009
, “
Comprehensive One-Dimensional, Semi-Analytical, Mathematical Model for Liquid-Feed Polymer Electrolyte Membrane Direct Methanol Fuel Cells
,”
J. Power Sources
,
188
(
2
), pp.
367
378
.10.1016/j.jpowsour.2008.11.138
17.
Meyers
,
J.
, and
Newman
,
J.
,
2002
, “
Simulation of the Direct Methanol Fuel Cell II. Modeling and Data Analysis of Transport and Kinetic Phenomena
,”
J. Electrochem. Soc.
,
149
(
6
), pp.
A718
A728
.10.1149/1.1473189
18.
Newman
,
J.
, and
Thomas-Alyea
,
K.
,
2004
,
Electrochemical Systems
,
John Wiley
,
Hoboken, NJ.
19.
García
,
B.
,
2009
, personal communications.
20.
Baxter
,
S.
,
Battaglia
,
V.
, and
White
,
R.
,
1999
, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
437
447
.10.1149/1.1391626
21.
Fogler
,
S.
,
2006
,
Elements of Chemical Reaction Engineering
, Pearson Education,
Upper Saddle River
,
NJ.
22.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
2006
,
Transport Phenomena
,
John Wiley, Hoboken
,
NJ.
23.
Eccariusa
,
S.
,
García
,
B.
,
Heblinga
,
C.
, and
Weidner
,
J.
,
2008
, “
Experimental Validation of a Methanol Crossover Model in DMFC Applications
,”
J. Power Sources
,
179
(
2
), pp.
723
733
.10.1016/j.jpowsour.2007.11.102
24.
Chapra
,
S.
, and
Canale
,
R.
,
2009
,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
.
25.
Barbir
,
F.
,
2005
,
PEM Fuel Cells: Theory and Practice
,
Elsevier Academic
,
Burlington, MA.
26.
Springer
,
T.
,
Zawodzinski
,
T.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
27.
Springer
,
T.
,
Wilson
,
M.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3513
3526
.10.1149/1.2221120
28.
Shi
,
M.
,
Wang
,
J.
, and
Chen
,
Y.
,
2007
, “
Study on Water Transport in PEM of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
166
(
2
), pp.
303
309
.10.1016/j.jpowsour.2006.12.036
29.
Scharfer
,
P.
,
Schabela
,
W.
, and
Kind
,
M.
,
2007
, “
Mass Transport Measurements in Membranes by Means of In Situ Raman Spectroscopy—First Results of Methanol and Water Profiles in Fuel Cell Membranes
,”
J. Membrane Sci.
,
303
(
1
), pp.
37
42
.10.1016/j.memsci.2007.06.051
30.
Fabian
,
T.
,
O’Hayre
,
R.
,
Litster
,
S.
,
Prinz
,
F.
, and
Santiago
,
J.
,
2010
, “
Passive Water Management at the Cathode of a Planar Air-Breathing Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
195
(
10
), pp.
3201
3206
.10.1016/j.jpowsour.2009.12.030
You do not currently have access to this content.