The effects of manufacturing and preparation conditions on the structural and electrical properties of Sr0.86Y0.08TiO3 (SYT) reduced in 5% NH3 (95% N2) are discussed. The realization of an SYT-based SOFC anode is challenging because the conductivity of SYT is highly dependent upon the thermal history combined with heat treatment atmosphere used in manufacturing. To obtain highly conductive SYT as a candidate for an SOFC anode material, all samples in this study were prereduced to 1400 °C under reducing conditions (ammonia) for 8 h. After prereduction, three samples were oxidized in air at 850 °C, 950 °C, and 1050 °C, respectively, for 4 h to evaluate the impact of oxidizing conditions in practical cell fabrication processes on the SYT conductivity. XRD analyses showed that the lattice parameter of SYT sintered in ammonia was slightly different than the sample sintered in air. Measured at 800 °C in reducing atmosphere (dry N2/4% H2), the maximum electrical conductivity of 36.3 S/cm was observed in SYT reduced in ammonia at 1400 °C. However, the observed conductivities were not preserved after oxidation-reduction cycles. Various SYT samples prereduced in ammonia at 1400 °C and then oxidized in air at 850 °C, 950 °C, and 1050 °C showed an irreversible drop on conductivity measured in a reducing atmosphere, and the higher the oxidation temperature, the lower the conductivity became. The conductivity results indicate a strong dependence upon the SYT manufacturing and processing conditions. Despite the irreversible drop due to the oxidation cycle, the conductivity of SYT sintered in ammonia at 1400 °C is still reasonable as a candidate for SOFC anodes, with careful management of cell fabrication conditions to avoid any oxidation processes at temperatures above 1050 °C.

References

References
1.
Goodenough
,
J. B.
, and
Huang
,
Y. H.
,
2007
, “
Alternative Anode Materials for Solid Oxide Fuel Cells
,”
J. Power Sources
,
173
(
1
), pp.
1
10
.10.1016/j.jpowsour.2007.08.011
2.
Sun
,
X. F.
,
Wang
,
S. R.
,
Wang
,
Z. R.
,
Qian
,
J. Q.
,
Wen
,
T. L.
, and
Huang
,
F. Q.
,
2009
, “
Evaluation of Sr0.88Y0.08TiO3-CeO2 as Composite Anode for Solid Oxide Fuel Cells Running on CH4 Fuel
,”
J. Power Sources
,
187
(
1
), pp.
85
89
.10.1016/j.jpowsour.2008.10.067
3.
Savaniu
,
C. D.
, and
Irvine
,
J. T. S.
,
2009
, “
Reduction Studies and Evaluation of Surface Modified A-Site Deficient La-Doped SrTiO3 as Anode Material for IT-SOFCs
,”
J. Mater. Chem.
,
19
(
43
), pp.
8119
8128
.10.1039/b912305a
4.
Lu
,
X. C.
,
Zhu
,
J. H.
,
Yang
,
Z. G.
,
Xia
,
G. G.
, and
Stevenson
,
J. W.
,
2009
, “
Pd-Impregnated SYT/LDC Composite as Sulfur-Tolerant Anode for Solid Oxide Fuel Cells
,”
J. Power Sources
,
192
(
2
), pp.
381
384
.10.1016/j.jpowsour.2009.03.009
5.
Pine
,
T. S.
,
Lu
,
X. Y.
,
Do
,
A. T. V.
,
Mumm
,
D. R.
, and
Brouwer
,
J.
,
2007
, “
Operation of an LSGMC Electrolyte-Supported SOFC With Composite Ceramic Anode and Cathode
,”
Electrochem. Solid-State Lett.
,
10
(
10
), pp.
B183
B185
.10.1149/1.2769100
6.
Li
,
X.
,
Zhao
,
H. L.
,
Shen
,
W.
,
Gao
,
F.
,
Huang
,
X. L.
,
Li
,
Y.
, and
Zhu
,
Z. M.
,
2007
, “
Synthesis and Properties of Y-Doped SrTiO3 as an Anode Material for SOFCS
,”
J. Power Sources
,
166
(
1
), pp.
47
52
.10.1016/j.jpowsour.2007.01.008
7.
Fu
,
Q. X.
Tietz
,
F.
Sebold
,
D.
Tao
,
S. W.
and
Irvine
,
J. T. S.
,
2007
, “
An Efficient Ceramic-Based Anode for Solid Oxide Fuel Cells
,”
Journal of Power Sources
,
171
(
2
), pp.
663
669
.10.1016/j.jpowsour.2007.06.159
8.
He
,
H. P.
,
Huang
,
Y. Y.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2004
, “
Characterization of YSZ-YST Composites for SOFC Anodes
,”
Solid State Ionics
,
175
(
1–4
), pp.
171
176
.10.1016/j.ssi.2004.09.033
9.
Hui
,
S. Q.
, and
Petric
,
A.
,
2002
, “
Evaluation of Yttrium-Doped SrTiO3 as an Anode for Solid Oxide Fuel Cells
,”
J. Eur. Ceram. Soc.
,
22
(
9–10
), pp.
1673
1681
.10.1016/S0955-2219(01)00485-X
10.
Hui
,
S. Q.
, and
Petric
,
A.
,
2002
, “
Electrical Properties of Yttrium-Doped Strontium Titanate Under Reducing Conditions
,”
J. Electrochem. Soc.
,
149
(
1
), pp.
J1
J10
.10.1149/1.1420706
11.
Lee
,
S.
,
Kim
,
G.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2008
, “
SOFC Anodes Based on Infiltration of La0.3Sr0.7TiO3
,”
J. Electrochem. Soc.
,
155
(
11
), pp.
B1179
B1183
.10.1149/1.2976775
12.
Ahn
,
K.
,
Jung
,
S.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2007
, “
A Support Layer for Solid Oxide Fuel Cells
,”
Ceram. Int.
,
33
(
6
), pp.
1065
1070
.10.1016/j.ceramint.2006.03.012
13.
Lu
,
X. Y.
,
Pine
,
T. S.
,
Mumm
,
D. R.
, and
Brouwer
,
J.
,
2007
, “
Modified Pechini Synthesis and Characterization of Y-Doped Strontium Titanate Perovskite
,”
Solid State Ionics
,
178
(
19–20
), pp.
1195
1199
.10.1016/j.ssi.2007.05.018
14.
Fu
,
Q. X.
,
Mi
,
S. B.
,
Wessel
,
E.
, and
Tietz
,
F.
,
2008
, “
Influence of Sintering Conditions on Microstructure and Electrical Conductivity of Yttrium-Substituted SrTiO3
,”
J. Eur. Ceram. Soc.
,
28
(
4
), pp.
811
820
.10.1016/j.jeurceramsoc.2007.07.022
15.
Fu
,
Q. X.
, and
Tietz
,
F.
,
2008
, “
Ceramic-Based Anode Materials for Improved Redox Cycling of Solid Oxide Fuel Cells
,”
Fuel Cells
,
8
(
5
), pp.
283
293
.10.1002/fuce.200800018
16.
Mclachlan
,
D. S.
,
Blaszkiewicz
,
M.
, and
Newnham
,
R. E.
,
1990
, “
Electrical-Resistivity of Composites
,”
J. Am. Ceram. Soc.
,
73
(
8
), pp.
2187
2203
.10.1111/j.1151-2916.1990.tb07576.x
17.
Marinsek
,
M.
,
Pejovnik
,
S.
, and
Macek
,
J.
,
2007
, “
Modelling of Electrical Properties of Ni-YSZ Composites
,”
J. Eur. Ceram. Soc.
,
27
(
2–3
), pp.
959
964
.10.1016/j.jeurceramsoc.2006.04.165
18.
Gross
,
M. D.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2007
, “
Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons
,”
J. Mater. Chem.
,
17
(
30
), pp.
3071
3077
.10.1039/b702633a
19.
Gross
,
M. D.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2007
, “
A Strategy for Achieving High Performance With SOFC Ceramic Anodes
,”
Electrochem. Solid-State Lett.
,
10
(
4
), pp.
B65
B69
.10.1149/1.2432942
You do not currently have access to this content.