In this research, the impact of structural parameters of bipolar plates on the proton exchange membrane (PEM) fuel cell performance has been investigated using numerical method, and this model incorporates all the essential fundamental physical and electrochemical processes occurring in the membrane electrolyte, cathode catalyst layer, electrode backing, and flow channel, with some assumptions in each part. In formulation of this model, the cell is assumed to work under steady state conditions. Also, since the thickness of the cell is negligible compared to other dimensions, one-dimensional and isothermal approximations are used. The structural parameters considered in this paper are: the width of channels (Wc), the width of support (Ws), the number of gas channels (ng), the height of channels (hc), and the height of supports (hp). The results show that structural parameters of bipolar plates have a great impact on outlet voltage in high current densities. Also, the number of gas channels, their surface area, the contacting area of bipolar plates, and electrodes have a great effect on the rate of reaction and consequently on outlet voltage. The model predictions have been compared with the existing experimental results available in the literature, and excellent agreement has been demonstrated between the model results and the experimental data for the cell polarization curve.

References

References
1.
Grove
,
W. R.
,
1839
, “
On Voltaic Series and the Combination of Gases by Platinum
,”
London Edinburgh Philos. Mag. J. Sci., Series 3
,
14
, pp.
127
130
.
2.
Bossel
,
U.
,
2000
, “
The Birth of the Fuel Cell 1835–1845
,”
European Fuel Cell Forum
,
Oberrohrdorf, Switzerland
.
3.
Sun
,
L.
,
Oosthuizen
,
P. H.
, and
McAuley
,
K. B.
, “
A Numerical Study of Channel-to-Channel Flow Cross-Over Through the Gas Diffusion Layer in a PEM-Fuel-Cell Flow System Using a Serpentine Channel With a Trapezoidal Cross-Sectional Shape
,”
Int. J. Therm. Sci.
(in press)
.
4.
Chiang
,
M. S.
, and
Chu
,
H. S.
, “
Numerical Investigation of Transport Component Design Effect on a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
(in press)
.
5.
Yi
,
J. S.
, and
Nguyen
,
T. V.
,
1998
, “
An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem.
,
145
(
4
), pp.
1149
1159
.10.1149/1.1838431
6.
Ge
,
S. H.
, and
Yi
,
B. L.
,
2003
, “
A Mathematical Model for PEMFC in Different Flow Modes
,”
J. Power Sources
,
124
, pp.
1
11
.10.1016/S0378-7753(03)00584-6
7.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Sci.
,
146
, pp.
38
45
.10.1149/1.1391561
8.
He
,
W.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
,
2000
, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
,
46
(
10
), pp.
2053
2064
.10.1002/aic.690461016
9.
Kumar
,
A.
, and
Reddy
,
R. G.
,
2006
, “
Effect of Gas Flow-Field Design in the Bipolar/End Plates on the Steady and Transient State Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
155
, pp.
264
271
.10.1016/j.jpowsour.2005.05.006
10.
Kumar
,
A.
, and
Reddy
,
R. G.
,
2003
, “
Effect of Channel Dimensions and Shape in the Flowfield Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
113
, pp.
11
18
.10.1016/S0378-7753(02)00475-5
11.
Kim
,
J.
,
Lee
,
S.
, and
Srinivasan
,
S.
,
1995
, “
Modeling of Proton Exchange Membrane Fuel Cell Performance With an Empirical Equation
,”
J. Electrochem. Soc.
,
142
(
8
), pp.
2670
2674
.10.1149/1.2050072
12.
Ahmed
,
D. H.
, and
Sung
,
H. J.
,
2008
, “
Design of a Deflected Membrane Electrode Assembly for PEMFCs
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5443
5453
.10.1016/j.ijheatmasstransfer.2007.08.037
13.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1991
, “
A Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
,
37
(
9
), pp.
1151
1163
.10.1002/aic.690370805
14.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of a Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.10.1149/1.2221251
15.
Marr
,
C.
, and
Li
,
X.
,
1999
, “
Composition and Performance Modeling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
77
, pp.
17
27
.10.1016/S0378-7753(98)00161-X
16.
Marr
,
C. L.
, and
Li
,
X.
,
1998
, “
An Engineering Model of Proton Exchange Membrane Fuel Cell Performance
,”
ARI
50
, pp.
190
200
.10.1007/s007770050014
17.
Weisbrod
,
K. R.
,
Grot
,
S. A.
, and
Vanderborgh
,
N. E.
,
1995
, “
Through-the-Electrode Model of a Proton Exchange Membrane Fuel Cell
,”
Electrochem. Soc. Proc.
23
, pp.
153
167
.
18.
Baschuk
,
J. J.
, and
Li
,
X.
,
2000
, “
Modeling of Polymer Electrolytemembrane Fuel Cells With Variable Degrees of Water Flooding
,”
J. Power Sources
,
86
, pp.
181
195
.10.1016/S0378-7753(99)00426-7
19.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York
.
20.
Marr
,
C. R.
,
1996
, “
Performance Modelling of a Proton Exchange Membrane Fuel Cell
,”
MSc thesis
,
University of Victoria
,
Victoria, Canada
.
21.
Parthasarathy
,
A.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
,
1992
, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum Nafion Interface—A Microelectrode Investigation
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2530
2537
.10.1149/1.2221258
22.
Newman
,
J. S.
,
1991
,
Electrochemical Systems
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
23.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. E.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell II: Empirical Model Development
,”
J. Electrochem. Soc.
142
(
1
), pp.
9
15
.10.1149/1.2043959
24.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
25.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
1990
,
Fundamentals of Heat and Mass Transfer
,
John Wiley
,
New York
.
26.
Kakac
,
S.
, and
Shah
,
R. K.
,
1987
,
Handbook of Single Phase Heat Transfer
,
John Wiley
,
New York
.
27.
Gerald
,
C. F.
, and
Wheatley
,
P. O.
,
1999
,
Applied Numerical Analysis
,
6th ed
.,
Addison-Wesley
,
Reading, MA
.
28.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
,
Redondo
,
A.
,
Sirinivasan
,
S.
,
1988
. “
Methods of Advance Technology of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
135
(
9
), pp.
2209
2214
.10.1149/1.2096240
You do not currently have access to this content.