The high frequency electrochemical impedance measurements with positive imaginary components in the impedance complex plot of a polymer electrolyte fuel cell (PEFC) are attributable to the inductance of the electrical cables of the measurement system. This study demonstrates that the inductive effect of the electrical cables deforms the high frequency region of the cathode impedance spectrum and as such leads to an erroneous interpretation of the electrochemical mechanisms in the cathode catalyst layer (CCL). This study is divided into a theoretical analysis and an experimental analysis. In the theoretical analysis a validated model that accounts for the impedance spectrum of the CCL as reported in the authors’ previous study is applied with experimental impedance data reported in the literature. The results show that the ionic resistance of the CCL electrolyte which skews the oxygen reduction reaction (ORR) current distribution toward the membrane interface is masked in the cathode impedance spectrum by the inductive component. In the experimental analysis cathode experimental impedance spectra were obtained through a three-electrode configuration in the measurement system and with two different electrical cables connected between the electronic load and the PEFC. The results agree with the theoretical analysis and also show that the property of causality in the Kramers-Kronig mathematical relations for electrochemical impedance spectroscopy (EIS) measurements is violated by the external inductance of the measurement cables. Therefore the experimental data presenting inductance at high frequencies do not represent the physics and chemistry of the PEFC. The study demonstrates that a realistic understanding of factors governing EIS measurements can only be gained by applying fundamental modeling which accounts for underlying electrochemical phenomena and experimental observations in a complementary manner.

References

References
1.
Savova-Stoynov
,
B.
, and
Stoynov
,
Z. B.
,
1987
, “
Analysis of the Inductance Influence on the Measured Electrochemical Impedance
,”
J. Appl. Electrochem.
,
17
, pp.
1150
1158
.10.1007/BF01023598
2.
Göhr
,
H.
,
Mirnik
,
M.
, and
Schiller
,
C. A.
,
1984
, “
Distortions of High Frequency Electrode Impedance: Their Causes and How to Avoid Them
,”
J. Electroanal. Chem.
,
180
, pp.
273
285
. 10.1016/0368-1874(84)83586-8
3.
Ciureanu
,
M.
, and
Roberge
,
R.
,
2001
, “
Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostic and Modeling of Air Cathodes
,”
J. Phys. Chem. B
,
105
, pp.
3531
3539
.10.1021/jp003273p
4.
Fouquet
,
N.
,
Doulet
,
C.
,
Nouillant
,
C.
,
Dauphin-Tanguy
,
G.
, and
Ould-Bouamama
,
B.
,
2006
, “
Model Based PEM Fuel Cell State-of-Health Monitoring Via AC Impedance Measurements
,”
J. Power Sources
,
159
, pp.
905
913
.10.1016/j.jpowsour.2005.11.035
5.
Makharia
,
R.
,
Mathias
,
M. F.
, and
Baker
,
D. R.
,
2005
, “
Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
152
, pp.
A970
A977
.10.1149/1.1888367
6.
Mérida
,
W.
,
Harrington
,
D. A.
,
Le Canut
,
J. M.
, and
McLean
,
G.
, 2006, “
Characterisation of Proton Exchange Membrane Fuel Cell (PEMFC) Failures Via Electrochemical Impedance Spectroscopy (EIS)
,”
J. Power Sources
,
161
, pp.
264
274
.10.1016/j.jpowsour.2006.03.067
7.
Asghari
,
S.
,
Mokmeli
,
A.
, and
Samavati
,
M.
, 2010, “
Study of PEM Fuel Cell Performance by Electrochemical Impedance Spectroscopy
,”
Int. J. Hydrogen Energy
,
35
, pp.
9283
9290
.10.1016/j.ijhydene.2010.03.069
8.
Cruz-Manzo
,
S.
,
Rama
,
P.
, and
Chen
,
R.
, 2010, “
Impedance Study on Oxygen Diffusion Through Fuel Cell Cathode Catalyst Layer at High Current
,”
J. Electrochem. Soc.
,
157
, pp.
B1865
B1871
.10.1149/1.3502569
9.
Cruz-Manzo
,
S.
,
Rama
,
P.
, and
Chen
,
R.
, 2010, “
The Low Current Electrochemical Mechanisms of the Fuel Cell Cathode Catalyst Layer Through an Impedance Study
,”
J. Electrochem. Soc.
,
157
, pp.
B400
B408
.10.1149/1.3280267
10.
Eikerling
,
M.
, and
Kornyshev
,
A. A.
, 1999, “
Electrochemical Impedance of the Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
,
475
, pp.
107
123
. 10.1016/S0022-0728(99)00335-6
11.
Suzuki
,
T.
,
Murata
,
H.
,
Hatanaka
,
T.
, and
Morimoto
,
Y.
, 2003, “
Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells
,”
R&D Rev. Toyota CRDL
,
39
, pp.
33
38
. Available at http://www.tytlabs.co.jp/english/review/rev393epdf/e393_033suzuki.pdf
12.
Orazem
,
M. E.
,
Pebere
,
N.
, and
Tribollet
,
B.
, 2006, “
Enhanced Graphical Representation of Electrochemical Impedance Data
,”
J. Electrochem. Soc.
,
153
, pp.
B129
B136
.10.1149/1.2168377
13.
Liu
,
F.
,
Yi
,
B.
,
Xing
,
D.
,
Yu
,
J.
,
Hou
,
Z.
, and
Fu
,
Y.
, 2003, “
Development of Novel Self-Humidifying Composite Membranes for Fuel Cells
,”
J. Power Sources
,
124
, pp.
81
89
.10.1016/S0378-7753(03)00616-5
14.
Li
,
G.
, and
Pickup
,
P. G.
, 2003, “
Ionic Conductivity of PEMFC Electrodes
,”
J. Electrochem. Soc.
,
150
, pp.
C745
C752
.10.1149/1.1611493
15.
Lefebvre
,
M. C.
,
Martin
,
R. B.
, and
Pickup
,
P. G.
, 1999, “
Characterization of Ionic Conductivity Profiles Within Proton Exchange Membrane Fuel Cells Gas Diffusion Electrodes by Impedance Spectroscopy
,”
Electrochem. Solid-State Lett.
,
2
, pp.
259
261
.10.1149/1.1390804
16.
Gazzarri
,
J.
,
Eikerling
,
M.
,
Wang
,
Q.
, and
Liu
,
Z.
, 2010, “
Estimation of Local Relative Humidity in Cathode Catalyst Layers of PEFC
,”
Electrochem. Solid-State Lett.
,
13
, pp.
B58
B62
.10.1149/1.3355233
17.
Kurz
,
T.
,
Hakenjos
,
A.
,
Krämer
,
J.
,
Zedda
,
M.
, and
Agert
,
C.
, 2008, “
An Impedance-Based Predictive Control Strategy for the State-of-Health of PEM Fuel Cell Stacks
,”
J. Power Sources
,
180
, pp.
742
747
.10.1016/j.jpowsour.2008.02.062
18.
Hsu
,
C. H.
, and
Mansfeld
,
F.
, 2001, “
Concerning the Conversion of the Constant Phase Element Parameter Y0 Into a Capacitance
,”
Corrosion
,
57
, pp.
747
748
.10.5006/1.3280607
19.
Thompson
,
E. L.
,
Jorne
,
J.
,
Gu
,
W.
, and
Gasteiger
,
H. A.
, 2008, “
PEM Fuel Cell Operation at −20 °C. II. Ice Formation Dynamics, Current Distribution, and Voltage Losses Within Electrodes
,”
J. Electrochem. Soc.
,
155
, pp.
B887
B896
.10.1149/1.2943203
20.
Neyerlin
,
K. C.
,
Gu
,
W.
,
Jorne
,
J.
,
Clark
, Jr.
A.
, and
Gasteiger
,
H. A.
, 2007, “
Cathode Catalyst Utilization for the ORR in a PEMFC Analytical Model and Experimental Validation
,”
J. Electrochem. Soc.
,
154
, pp.
B279
B287
.10.1149/1.2400626
21.
Chan
,
S. H.
,
Chen
,
X. J.
, and
Khor
,
K. A.
, 2001, “
Reliability and Accuracy of Measured Overpotential in a Three-Electrode Fuel Cell System
,”
J. Appl. Electrochem.
,
31
, pp.
1163
1170
.10.1023/A:1012232301349
22.
Dolle
,
M.
,
Orsini
,
F.
,
Gozdz
,
A. S.
, and
Tarascon
,
J.
, 2001, “
Development of Reliable Three-Electrode Impedance Measurements in Plastic Li-Ion Batteries
,”
J. Electrochem. Soc.
,
148
, pp.
A851
A857
.10.1149/1.1381071
23.
Yan
,
Q.
,
Toghiani
,
H.
, and
Causey
,
H.
, 2006, “
Steady State and Dynamic Performance of Proton Exchange Membrane Fuel Cells (PEMFCs) Under Various Operating Conditions and Load Changes
,”
J. Power Sources
,
161
,
492
502
.10.1016/j.jpowsour.2006.03.077
24.
Yuan
,
X.
,
Sun
,
J. C.
,
Wang
,
H.
, and
Zhang
,
J.
, 2006, “
AC Impedance Diagnosis of a 500 W PEM Fuel Cell Stack Part II: Individual Cell Impedance
,”
J. Power Sources
,
161
, pp.
929
937
.10.1016/j.jpowsour.2006.07.020
25.
Gode
,
P.
,
Jaouen
,
F.
,
Lindbergh
,
G.
,
Lundblad
,
A.
, and
Sundholm
,
G.
, 2003, “
Influence of the Composition on the Structure and Electrochemical Characteristics of the PEFC Cathode
,”
Electrochim. Acta
,
48
, pp.
4175
4187
.10.1016/S0013-4686(03)00603-0
26.
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Wiezell
,
K.
, 2003, “
Transient Techniques for Investigating Mass-Transport Limitations in Gas Diffusion Electrodes
,”
J. Electrochem. Soc.
,
150
, pp.
A1711
A1717
.10.1149/1.1624295
27.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
140
, pp.
2178
2186
.10.1149/1.2220792
28.
Macdonald
,
D. D.
, and
Urquidi-Macdonald
,
M.
, 1985, “
Application of Kramers-Kronig Transforms in the Analysis of Electrochemical Systems
,”
J. Electrochem. Soc.
,
132
, pp.
2316
2319
.10.1149/1.2113570
29.
Urquidi-Macdonald
,
M.
,
Real
,
S.
, and
Macdonald
,
D. D.
, 1986, “
Application of Kramers-Kronig Transforms in the Analysis of Electrochemical Impedance Data II. Transformations in the Complex Plane
,”
J. Electrochem. Soc.
,
133
, pp.
2018
2024
.10.1149/1.2108332
30.
Urquidi-Macdonald
,
M.
,
Real
,
S.
, and
Macdonald
,
D. D.
, 1990, “
Application of Kramers-Kronig Transforms in the Analysis of Electrochemical Impedance Data III. Stability and Linearity
,”
Electrochim. Acta
,
35
, pp.
1559
1566
.10.1016/0013-4686(90)80010-L
31.
ZMAN 2.2, 2005, WonATech Co., Seoul, Korea.
32.
Orazem
,
M.
, and
Tribollet
,
B.
,
2008
,
Electrochemical Impedance Spectroscopy
,
Wiley
,
Hoboken, NJ
.
33.
Boukamp
,
B. A.
, 2004, “
Electrochemical Impedance Spectroscopy in Solid State Ionics: Recent Advances
,”
Solid State Ionics
,
169
, pp.
65
73
.10.1016/j.ssi.2003.07.002
34.
Hampson
,
N. A.
,
Karunathilaka
,
S. A. G. R.
, and
Leek
,
R.
, 1980, “
The Impedance of Electrical Storage Cells
,”
J. Appl. Electrochem.
,
10
, pp.
3
11
.10.1007/BF00937331
You do not currently have access to this content.