Lateral impedance and local characteristics of anode-supported solid oxide fuel cells (SOFCs) are studied in this paper. The testing device, which combines the original cell housing with a four-point probe equipment, is set for measuring SOFC single cell. The current collectors on anode and cathode in the original cell housing are, respectively, replaced by four independent probe units. They are not only to collect current, but also become measuring probes. Therefore, the lateral impedance of anode and cathode can be measured. Furthermore, the local characteristics are examined by open circuit voltage (OCV), I-V curve, and electrochemical impedance spectroscopy (EIS) measurements. The results show that the lateral impedance is substantially varied with temperature, the OCV at the center of the cell are higher than the edge, the central location on cell have better performance and lower impedance than the marginal location.

References

References
1.
Singhal
,
C. S.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
New York
.
2.
Jiang
,
S. P.
, and
Ramprakash
,
Y.
, 1999, “
H2 Oxidation on Ni/Y-TZP Cermet Electrodes - Polarization Behaviour
,”
Solid State Ionics
,
116
, pp.
145
156
.
3.
Koide
,
H.
,
Someya
,
Y.
,
Yoshida
,
T.
, and
Maruyama
,
T.
, 2000, “
Properties of Ni/YSZ Cermet as Anode for SOFC
,”
Solid State Ionics
,
132
, pp.
253
260
.
4.
Otoshi
,
S.
,
Sasaki
,
H.
,
Ohnishi
,
H.
,
Hase
,
M.
,
Ishimaru
,
K.
,
Ippommatsu
,
M.
,
Higuchi
,
T.
,
Miyayama
,
M.
, and
Yanagida
,
H.
, 1991, “
Changes in the Phases and Electrical Conduction Properties of (La1−xSrx)1−yMnO3−δ
,”
J. Electrochem. Soc.
,
138
, pp.
1519
1523
.
5.
Huang
,
Q. A.
,
Hui
,
R.
,
Wang
,
B.
, and
Zhang
,
J.
, 2007,”
A Review of AC Impedance Modeling and Validation in SOFC Diagnosis
,”
Electrochim. Acta
,
52
, pp.
8144
8164
.
6.
Hwang
,
C. S.
,
Tsai
,
C. H.
,
Lo
,
C. H.
, and
Sun
,
C. H.
, 2008, “
Plasma Sprayed Metal Supported YSZ/Ni-LSGM-LSCF ITSOFC With Nanostructured Anode
,”
J. Power Source
,
180
, pp.
132
142
.
7.
Lo
,
C. H.
,
Tsai
,
C. H.
, and
Hwang
,
C. S.
, 2009, “
Plasma-Sprayed YSZ/Ni-LSGM-LSCo Intermediate-Temperature Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
,
6
(
4
), pp.
513
524
.
8.
Adler
,
S. B.
, 2002, “
Reference Electrode Placement in Thin Solid Electrolytes
,”
J. Electrochem. Soc.
,
149
, pp.
E166
E172
.
9.
Jiang
,
S. P.
,
Love
,
J. G.
, and
Apateanu
,
L.
, 2003, “
Effect of Contact Between Electrode and Current Collector on the Performance of Solid Oxide Fuel Cells
,”
Solid State Ionics
,
160
, pp.
15
26
.
10.
Brett
,
D. J. L.
,
Atkins
,
S.
,
Brandon
,
N. P.
,
Vesovic
,
V.
,
Vasileiadis
,
N.
, and
Kucernak
,
A. R.
, 2001, “
Measurement of the Current Distribution Along a Single Flow Channel of a Solid Polymer Fuel Cell
,”
Electrochem. Commun.
,
3
, pp.
628
632
.
11.
Chiang
,
L. K.
,
Liu
,
H. C.
,
Shiu
,
Y. W.
,
Lee
,
C. H.
, and
Lee
,
R. Y.
, 2008, “
Thermo-Electrochemical and Thermal Stress Analysis for an Anode-Supported SOFC Cell
,”
Renewable Energy
,
33
, pp.
2580
2588
.
12.
Ota
,
T.
,
Koyama
,
M.
,
Wen
,
C.
,
Yamada
,
K.
, and
Takahashi
,
H.
, 2003, “
Object-Based Modeling of SOFC System: Dynamic Behavior of Micro-Tube SOFC
,”
J. Power Sources
,
118
, pp.
430
439
.
13.
Kao
,
W. X.
,
Lee
,
M. C.
,
Chang
,
Y. C.
,
Lin
,
T. N.
,
Wang
,
C. H.
, and
Chang
,
J. C.
, 2010, “
Fabrication and Evaluation of the Electrochemical Performance of the Anode-Supported Solid Oxide Fuel Cell With the Composite Cathode of La0.8Sr0.2MnO3−δ-Gadolinia-Doped Ceria Oxide/ La0.8Sr0.2MnO3−δ
,”
J. Power Sources
,
195
, pp.
6468
6472
.
14.
Kao
,
W. X.
,
Lee
,
M. C.
,
Lin
,
T. N.
,
Wang
,
C. H.
, and
Chang
,
Y. C.
, 2010, “
Fabrication and Characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Gadolinia-Doped Ceria Cathode for an Anode-Supported Solid-Oxide Fuel Cell
,”
J. Power Sources
,
195
, pp.
2220
2223
.
15.
Liu
,
Q. L.
,
Khor
,
K. A.
,
Chan
,
S. H.
, and
Chen
,
X. J.
, 2006, “
Anode-Supported Solid Oxide Fuel Cell With Yttria-Stabilized Zirconia/Gadolinia-Doped Ceria Bilalyer Electrolyte Prepared by Wet Ceramic Co-Sintering Process
,”
J. Power Sources
,
162
, pp.
1036
1042
.
16.
Chen
,
X. J.
,
Khor
,
K. A.
, and
Chan
,
S. H.
, 2003, “
Identification of O2 Reduction Processes at Yttria Stabilized Zirconia|doped Lanthanum Manganite Interface
,”
J. Power Sources
,
123
, pp.
17
25
.
17.
Jiang
,
S. P.
,
Love
,
J. G.
,
Zhang
,
J. P.
,
Hoang
,
M.
,
Ramprakash
,
Y.
,
Hughes
,
A. E.
, and
Badwal
,
S. P. S.
, 1999, “
The Electrochemical Performance of LSM/Zirconia-Yttria Interface as a Function of A-Site Non-Stoichiometry and Cathodic Current Treatment
,”
Solid State Ionics
,
121
, pp.
1
10
.
18.
Mizusaki
,
J.
,
Yonemura
,
Y.
,
Kamata
,
H.
,
Ohyama
,
K.
,
Mori
,
N.
,
Takai
,
H.
,
Tagawa
,
H.
,
Dokiya
,
M.
,
Naraya
,
K.
,
Sasamoto
,
T.
,
Inaba
,
H.
, and
Hashimoto
,
T.
, 2000, “
Electronic Conductivity, Seebeck Coefficient, Defect and Electronic Structure of Nonstoichiometric La1−xSrxMnO3
,”
Solid State Ionics
,
132
, pp.
167
180
.
19.
O’hayre
,
R. P.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
, 2009,
Fuel Cell Fundamentals
,
Wiley
,
New York
.
20.
Costamagna
,
P.
, and
Honegger
,
K.
, 1998, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
,
145
(
11
), pp.
3995
4007
.
21.
Li
,
T. S.
,
Wang
,
W. G.
,
Miao
,
H.
,
Chen
,
T.
, and
Xu
,
C.
, 2010, “
Effect of Reduction Temperature on the Electrochemical Properties of a Ni/YSZ Anode-Supported Solid Oxide Fuel Cell
,”
J. Alloys Compd.
,
495
, pp.
138
143
.
22.
Metzger
,
P.
,
Friedrich
,
K. A.
,
Müller-Steinhagen
,
H.
, and
Schiller
,
G.
, 2006, “
SOFC Characteristics Along the Flow Path
,”
Solid State Ionics
,
177
, pp.
2045
2051
.
23.
Liu
,
H. C.
,
Lee
,
C. H.
,
Shiu
,
Y. H.
,
Lee
,
R. Y.
, and
Yan
,
W. M.
, 2007, “
Performance Simulation for an Anode-Supported SOFC Using Star-CD Code
,”
J. Power Sources
,
167
, pp.
406
412
.
You do not currently have access to this content.