In this paper, the prototype of a circular molten carbonate fuel cell (MCFC) built in the laboratories of FN SpA Nuove Tecnologie e Servizi Avanzati is analyzed using a tridimensional computational fluid dynamic (CFD) model. The prototype is the result of FN and Politecnico di Torino activities developed for the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) within the framework of Ministry of Economic Development, MSE-ENEA. This model considers heat, mass and current transfer as well as chemical and electrochemical reactions. The results show that some inhomogeneous distributions in the reactants, causing nonoptimal use of the reactant surfaces. An effective way to improve the distribution in current density consists in tracing tree shaped channels on the surface onto the distribution porous medium. In this paper, Y shaped channels are adopted to improve the distribution of gas within the fuel cell and consequently to enhance the performance of the original design of the fuel cell. In addition, the configuration of the outlet of the anodic compartment is also investigated in order to further increase the performance of the fuel cell. The geometrical parameter identifying the topology of distribution channels are chosen accordingly to the constructal theory. The results show that significant improvements can be achieved. Power density is increased of about 6% when the tree-shaped channel is adopted. If a double anodic inlet is also considered, the enhancement in the power density is of about 11% with respect to the initial configuration.

References

References
1.
NETL, 2004,
Fuel Cell Handbook
,
7th ed.
,
US Department of Energy, National Energy Technology Laboratory
,
Morgantown
.
2.
Yoshiba
,
F.
,
Ono
,
N.
,
Izaki
,
Y.
,
Watanabe
,
T.
, and
Abe
,
T.
, 1998, “
Numerical Analysis of Internal Conditions of a Molten Carbonate Fuel Stack: Comparison of Stack Performances for Various Gas Flow Types
,”
J. Power Sources
,
71
, pp.
328
336
.
3.
Kim
,
Y. J.
,
Chang
,
I. G.
,
Lee
,
T. W.
, and
Chung
,
M. K.
, 2010, “
Effects of Relative Gas Flow Direction in Anode and Cathode on the Performance Characteristics of a Molten Carbonate Fuel Cell
,”
Fuel
,
89
, pp.
1019
1028
.
4.
Cotana
,
F.
,
Rossi
,
F.
, and
Nicolini
,
A.
, 2004, “
A New Geometry High Performance Small Power MCFC
,”
J. Fuel Cell Sci. Technol.
,
1
, pp.
25
29
.
5.
Rossi
,
F.
, and
Nicolini
,
A.
, 2011, “
Experimental Investigation on a Novel Electrolyte Configuration for Cylindrical Molten Carbonate Fuel Cells
,”
J. Fuel Cell Sci. Technol.
,
8
, pp.
1
9
.
6.
Rossi
,
F.
, and
Nicolini
,
A.
, 2009, “
A Cylindrical Small Size Molten Carbonate Fuel Cell: Experimental Investigation on Materials and Improving Performance Solutions
,”
Fuel Cells
,
9
, pp.
170
177
.
7.
Bosio
,
B.
,
Costamagna
,
P.
, and
Parodi
,
F.
, 1999, “
Modeling and Experimentation of Molten Carbonate Fuel Cell Reactors in a Scale-Up Process
,”
Chem. Eng. Sci.
,
54
, pp.
2907
2916
.
8.
Brouwer
,
J.
,
Jabbari
,
F.
,
Leal
,
E. M.
, and
Orr
,
T.
, 2006, “
Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation
,”
J. Power Sources
,
158
, pp.
213
224
.
9.
Bozzini
,
B.
,
Maci
,
S.
,
Sgura
,
I.
,
Lo Presti
,
R.
, and
Simonetti
,
E.
, 2011, “
Numerical Modelling of MCFC Cathode Degradation in Terms of Morphological Variations
,”
Int. J. Hydrogen Energy
,
36
, pp.
10403
10413
.
10.
Marra
,
D.
,
Bosio
,
B.
, and
Arato
,
E.
, 2009, “
Fluid-Dynamic Characterisation of MCFC Gas Distributors
,”
Chem. Eng. Process.
,
48
, pp.
797
807
.
11.
Gundermann
,
M.
,
Heidebrecht
,
P.
, and
Sundmacher
,
K.
, 2008, “
Physically Motivated Reduction of a 2D Dynamic Model for Molten Carbonate Fuel Cell (MCFC)
,”
Fuel Cells
,
8
(
2
), pp.
96
110
.
12.
Fermeglia
,
M.
,
Cudicio
,
A.
,
De Simon
,
G.
,
Longo
,
G.
, and
Pricl
,
S.
, 2005, “
Process Simulation for Molten Carbonate Fuel Cells
,”
Fuel Cells
,
5
(
1
), pp.
66
79
.
13.
Senn
,
S. M.
, and
Poulikakos
,
D.
, 2004, “
Laminar Mixing, Heat Transfer and Pressure Drop in Tree-Like Microchannel Nets and Their Applications for Thermal Management in Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
130
, pp.
178
191
.
14.
Bejan
,
A.
, 1995,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
15.
Zimparov
,
V. D.
,
da Silva
,
A. K.
, and
Bejan
,
A.
, 2006, “
Thermodynamic Optimization of Tree-Shaped Flow Geometries
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1619
1630
.
16.
Verda
,
V.
, and
Sciacovelli
,
A.
, 2011, “
Design Improvement of Circular Molten Carbonate Fuel Cell Stack Through CFD Analysis
,”
Appl. Therm. Eng.
,
31
, pp.
2740
2748
.
17.
Massano
,
C.
,
Sciacovelli
,
A.
, and
Verda
,
V.
, 2009, “
Detailed Model of Molten Carbonate Fuel Cell Stacks
,”
Proceedings of the ECOS 2009
, Aug. 31–Sept. 3,
Foz do Iguaçu, Paraná
, Brazil.
18.
Bird
,
R. B.
,
Steward
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
J. Wiley & Sons
,
New York
.
19.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
,
Springer
,
New York
.
20.
Krishna
,
R. J. A.
, and
Wesselingh
,
J. A.
, 1997, “
The Maxwell-Stefan Approach to Mass Transfer
,”
Chem. Eng. Sci.
,
52
(
6
) pp.
861
911
.
21.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
, 2005, “
Computational Analysis of Species Transport and Electrochemical Characteristics of a MOLB-Type SOFC
,”
J. Power Sources
,
140
, pp.
235
242
.
22.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
, 1966, “
A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients
,”
Indust. Eng. Chem.
,
58
(
5
), pp.
18
27
.
23.
Liu
,
Q.
,
Tian
,
Y.
,
Xia
,
C.
,
Thompson
,
L. T.
,
Liang
,
B.
, and
Li
,
Y.
, 2008, “
Modeling and Simulation of a Single Direct Carbon Fuel Cell
,”
J. Power Sources
,
185
, pp.
1022
1029
.
24.
Fermaglia
,
M.
,
Cudicio
,
A.
,
DeSimon
,
G.
,
Longo
,
G.
, and
Pricl
,
S.
, 2004, “
Process Simulation for Molten Carbonate Fuel Cells
,”
Fuel Cells
,
5
, pp.
66
79
.
25.
Wilemski
,
G.
, 1983, “
Simple Porous Electrode Models for Molten Carbonate Fuel Cells
,”
J. Electrochem. Soc.
,
130
, pp.
117
121
.
26.
Prins-Jansen
,
A.
,
Hemmes
,
K.
, and
de Wit
,
J. H. W.
, 1997, “
An Extensive Treatment of the Agglomerate Model for Porous Electrodes in Molten Carbonate Fuel Cells—I. Qualitative Analysis of the Steady-State Model
,”
Electrochim. Acta
,
42
, pp.
3585
3600
.
27.
Sciacovelli
,
A.
, and
Verda
,
V.
, 2009, “
Entropy Generation Analysis in a Monolithic-Type Solid Oxide Fuel Cell (SOFC)
,”
Energy
,
34
, pp.
850
865
.
28.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
Washington, D.C
.
29.
Amelio
,
C.
,
Diaz
,
G.
,
Ferrari
,
E.
,
Ghisolfi
,
E. L.
,
Mannarino
,
L.
,
Spadaro
,
C.
,
Poskovic
,
E.
, and
Baccaro
,
S.
, 2009, “
A New Approach to MCFC Ceramic Matrixes Manufacturing and Laboratory Small Scale Stack Testing, Development of Innovative SOFC Cell Porous Components
,”
Proceedings of the European Fuel Cell Conference
, Paper No. EFC09–17166.
30.
Copiello
,
D.
, and
Fabbri
,
G.
, 2009, “
Multi-Objective Genetic Optimization of the Heat Transfer From Longitudinal Wavy Fins
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1167
1176
.
31.
Xing
,
X. Q.
,
Lum
,
K. W.
,
Poh
,
H. J.
, and
Wu
,
Y. L.
, 2009, “
Geometry Optimization for Proton-Exchange Membrane Fuel Cells With Sequential Quadratic Programming Method
,”
J. Power Sources
,
186
, pp.
10
21
.
32.
Sciacovelli
,
A.
, and
Verda
,
V.
, 2011, “
Entropy Generation Minimization for the Optimal Design of the Fluid Distribution System in a Circular MCFC
,”
Int. J. Thermodyn.
,
14
, pp.
167
177
.
You do not currently have access to this content.