The gas diffusion layers (GDLs) in polymer proton exchange membrane fuel cells are under compression in operation. Understanding and then being able to quantify the reduced ability of GDLs to conduct gases due to the compression is hence important in fuel cell design. In this paper, we investigated the change of anisotropic permeability of GDLs under different compressions using the improved multiple-relaxation time (MRT) lattice Boltzmann model and X-ray computed micro-tomography. The binary 3D X-ray images of GDLs under different compressions were obtained using the technologies we developed previously, and the permeability of the GDLs in both through-plane and in-plane directions was calculated by simulating gas flow at micron scale through the 3D images. The results indicated that, in comparison with the single-relaxation time (SRT) lattice Boltzmann model commonly used in the literature, the MRT model is robust and flexible in choosing model parameters. The SRT model can give accurate results only when using a specific relaxation parameter whose value varies with porosity. The simulated results using the MRT model reveal that compression could lead to a significant decrease in permeability in both through-plane and in-plane directions, and that the relationship between the decreased permeability and porosity can be well described by both Kozeny-Carman relation and the equation derived by Tomadakis and Sotirchos (1993, “Ordinary and Transition Rdgime Diffusion in Random Fiber Structure,” AIChE J., 39, pp. 397–412) for porosity in the range from 50% to 85%. Since GDLs compression takes place mainly in the through-plane direction, the results presented in this work could provide an easy way to estimate permeability reduction in both through-plane and in-plane directions when the compressive pressure is known.

References

References
1.
Li
,
X.
, 2006,
Principles of Fuel Cells,
,
Taylor & Francis
,
New York
.
2.
Mathias
,
M. F.
,
Roth
,
J.
,
Feleming
,
J.
, and
Lehnert
,
W.
, 2003, “
Diffusion Media Materials and Characterization
,”
Handbook of Fuel Cells-Fundamentals, Technology and Applications
,
W.
Vielstich
,
H. A.
Gasteiger
, and
A.
Lamm
, eds.,
Wiley
,
New York
, pp.
517
537
.
3.
Hottinen
,
T.
, and
Himanen
,
O.
, 2007, “
PEMFC Temperature Distribution Caused by Inhomogeneous Compression of GDL
,”
Electrochem. Commun.
,
9
(
5
), pp.
1047
1052
.
4.
Ge
,
J.
,
Higier
,
A.
, and
Liu
,
H.
, 2006, “
Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance
,”
J. Power Sources
,
159
(
2
), pp.
922
927
.
5.
Bazylak
,
A.
,
Sinton
,
D.
,
Liu
,
Z. S.
, and
Djilali
,
N.
, 2007, “
Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers
,”
J. Power Sources
,
163
(
2
), pp.
784
792
.
6.
Escribano
,
S.
,
Blachot
,
J.-F.
,
Ethcve
,
J.
,
Morin
,
A.
, and
Mosdale
,
R.
, 2006, “
Characterization of PEMFCs Gas Diffusion Layers Properties
,”
J. Power Sources
,
156
(
1
), pp.
8
13
.
7.
Nitta
,
I.
,
Hottinen
,
T.
,
Himanen
,
O.
, and
Mikkola
,
M.
, 2007, “
Inhomogeneous Compression of PEMFC Gas Diffusion Layer: Part I. Experimental
,”
J. Power Sources
,
171
(
1
), pp.
26
36
.
8.
Hottinen
,
T.
,
Mikkola
,
M.
, and
Lund
,
P.
, 2004, “
Evaluation of Planar Free-Breathing Polymer Electrolyte Membrane Fuel Cell Design
,”
J. Power Sources
,
129
(
1
), pp.
68
72
.
9.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Micro Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
49
, pp.
4359
4369
.
10.
Williams
,
M. V.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
, 2004, “
Influence of Convection Through Gas-Diffusion Layers on Limiting Current in PEM FCs Using a Serpentine Flow Field
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1617
A1627
.
11.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
, 2006, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
,
162
(
1
), pp.
228
238
.
12.
Hussaini
,
I. S.
, and
Wang
,
C. Y.
, 2010, “
Dynamic Water Management of Polymer Electrolyte Membrane Fuel Cells Using Intermittent RH Contro
,”
J. Power Sources
,
195
(
12
), pp.
3822
3829
.
13.
Gurau
,
V.
,
Bluemle
,
M. J.
,
De Castro
,
E. S.
,
Tsou
,
Y. M.
, and
Zawodzinski
,
T. A.
, 2007, “
Characterization of Transport Properties in Gas Diffusion Layers for Proton Exchange Membrane Fuel Cell: 2. Absolute Permeability
,”
J. Power Sources
,
165
(
2
), pp.
793
802
.
14.
Sinha
,
P. K.
,
Halleck
,
P.
, and
Wang
,
C. Y.
, 2006, “
Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-Ray Microtomography
,”
Electrochem. Solid State-Lett.
,
9
(
7
), pp.
A344
A348
.
15.
Becker
,
J.
,
Fluckiger
,
R.
,
Reum
,
M.
,
Buchi
,
F. N.
,
Marone
,
F.
, and
Stampanoni
,
M.
, 2009, “
Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy
,”
J. Electrochem. Soc.
,
156
(
10
), pp.
B1175
B1181
.
16.
Rama
,
P.
,
Liu
,
Y.
,
Chen
,
R.
,
Ostadi
,
H.
,
Jiang
,
K.
,
Zhang
,
X.
,
Fisher
,
R.
, and
Jeschke
,
M.
, 2010, “
An X-Ray Tomography Based Lattice Boltzmann Simulation Study on Gas Diffusion Layers of Polymer Electrolyte Fuel Cells
,”
J. Fuel Cell Science Technology
,
7
(
3
), p.
031015
.
17.
Hao
,
L.
, and
Cheng
,
P.
, 2009, “
Lattice Boltzmann Simulations of Anisotropic Permeabilities in Carbon Paper Gas Diffusion Layers
,”
J. Power Sources
,
186
(
1
), pp.
104
114
.
18.
Van Dormaal
,
M. A.
, and
Pharoah
,
J. G.
, 2009, “
Determination of Permeability in Fibrous Porous Media Using the Lattice Boltzmann Method with Application to PEM Fuel Cells
,”
Int. J. Numer. Methods Fluids
,
59
, pp.
75
89
.
19.
Rama
,
P.
,
Liu
,
Y.
,
Chen
,
R.
,
Ostadi
,
H.
,
Jiang
,
K.
,
Gao
,
Y.
,
Zhang
,
X.
,
Brivio
,
D.
and
Grassini
,
P.
, 2011, “
A Numerical Study of Structural Change and Anisotropic Permeability in Compressed Carbon Cloth Polymer Electrolyte Fuel Cell Gas Diffusion Layers
,”
Fuel Cells
,
11
(
2
), pp.
274
285
.
20.
Pan
,
C. X.
,
Luo
,
L. S.
, and
Miller
,
C. T.
, 2006, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
, pp.
898
909
.
21.
Gao
,
Y.
,
Zhang
,
X. X.
,
Rama
,
P.
,
Liu
,
Y.
,
Chen
,
R.
,
Ostadi
,
H.
, and
Jiang
,
K.
, 2012, “
Calculating the Anisotropic Permeability of Porous Media Using the Lattice Boltzmann Method and X-Ray Computed Tomography
,”
Transp. Porous Media
,
92
, pp.
457
472
.
22.
Higuera
,
F. J.
, and
Jimenez
,
J.
, 1989, “
Boltzmann Approach to Lattice Gas Simulations
,”
Europhys. Lett.
,
9
, pp.
663
669
.
23.
Shan
,
X.
, and
Chen
,
H.
, 1993, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.
24.
Manz
,
B.
,
Gladden
,
L. F.
, and
Warren
,
P. B.
, 1999, “
Flow and Dispersion in Porous Media: Lattice-Boltzmann and NMR Studies
,”
AIChE J.
,
45
(
9
), pp.
1845
1854
.
25.
Chen
,
S.
,
Chen
,
H.
,
Martnez
,
D.
, and
Matthaeus
,
W.
, 1991, “
Lattice Boltzmann Model for Simulation of Magnetohydrodynamics
,”
Phys. Rev. Lett.
,
67
(
27
), pp.
3776
3779
.
26.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation For Fluid Dynamics and Beyond
,
Oxford University
,
New York
.
27.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
, 1992, “
Recovery of the Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method
,”
Phys. Rev. A
,
45
(
8
), pp.x
R5339
R5342
.
28.
D’Humières
,
D.
,
Ginzburg
,
I.
,
Krafczyk
,
M.
,
Lallemand
,
P.
, and
Luo
,
L. S.
, 2002, “
Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions
,”
Philos. Trans. R. Soc. London, Ser. A
,
360
(
1792
), pp.
437
451
.
29.
Lallemand
,
P.
, and
Luo
,
L.-S.
, 2000, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), pp.
6546
6562
.
30.
Bouzidi
,
M.
,
Firdaouss
,
M.
, and
Lallemand
,
P.
, 2001, “
Momentum Transfer of a Boltzmann-Lattice Fluid with Boundaries
,”
Phys. Fluids
,
13
(
3452-3459
), pp.
3452
3459
.
31.
Zou
,
Q.
, and
He
,
X.
, 1997, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
9
, pp.
1591
1598
.
32.
Ostadi
,
H.
,
Rama
,
P.
,
Liu
,
Y.
,
Chen
,
R.
,
Zhang
,
X.
, and
Jiang
,
K.
, 2010, “
Nanotomography Based Study of Gas Diffusion Layers
,”
Microelectron. Eng.
,
87
(
5-8
), pp.
1640
1642
.
33.
Zhang
,
X. X.
,
Crawford
,
J. W.
,
Bengough
,
A. G.
, and
Young
,
I. M.
, 2002, “
On Boundary Conditions in the Lattice Boltzmann Model for Advection and Anisotropic Dispersion of Solute in Soils
,”
Adv. Water Resour.
,
26
(
6
), pp.
691
699
.
34.
Tomadakis
,
M. M.
, 2005, “
Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates With Experimental and Analytical Results
,”
J. Compos. Mater.
,
39
(
2
), pp.
163
188
.
35.
Tomadakis
,
M. M.
, and
Sotirchos
,
S. V.
, 1993, “
Ordinary and Transition Rdgime Diffusion in Random Fiber Structure
,”
AIChE J.
,
39
, pp.
397
412
.
You do not currently have access to this content.