This study explores cofiring ceria (CeO2) with NiO and 8 mol% yttria-stabilized zirconia (YSZ) to form Ni-based cermet anodes for high-temperature solid oxide fuel cells (SOFCs) operating on syngas and n-butane/steam fuel feeds. Particular attention is paid to the suppression of carbon deposit growth in Ni-based anodes with carbonaceous fuel feeds. CeO2 was cofired with NiO and YSZ to form a porous Ni cermet anode support layer after reduction in H2 at 800°C. The porous anode support layer (1 mm thick) was combined with a Ni/YSZ functional layer (∼25 μm thick), a dense YSZ electrolyte (10–20 μm thick), and porous La0.8Sr0.2MnO3−x (LSM)/YSZ cathodes (∼50 μm thick) to form anode-supported button cells for electrochemical characterization. The button cells were tested from 700 °C to 800 °C on various fuels including syngas and n-butane/H2O mixtures at steam-to-carbon (S/C) ratios of 1.0 and 1.5. Electrochemical testing revealed that CeO2 addition provided stable performance at 800 °C without compromising power densities—up to 0.6 W/cm2 on syngas and 0.35 W/cm2 on direct butane feeds. Furthermore, the addition of CeO2 suppressed significant carbon deposition as observed for Ni/YSZ anode support layers without CeO2. Testing with syngas at different H2 and CO partial pressures indicated that high power densities can be maintained along an anode channel for up to 50% fuel conversion. The results indicate that cofiring CeO2 in Ni/YSZ anode support layers presents a viable option for stable SOFC operation on either prereformed or internally reformed light-hydrocarbon fuel feeds.

References

References
1.
Atkinson
,
A.
,
Barnett
,
S.
,
Gorte
,
R. J.
,
Irvine
,
J. T. S.
,
McEvoy
,
A. J.
,
Mogensen
,
M.
,
Singhal
,
S. C.
, and
Vohs
,
J.
, 2004, “
Advanced Anodes for High-Temperature Fuel Cells
,”
Nat. Mater.
,
3
, pp.
17
27
.
2.
McIntosh
,
S.
, and
Gorte
,
R. J.
, 2004, “
Direct Hydrocarbon Solid Oxide Fuel Cells
,”
Chem. Rev.
,
104
, pp.
4845
4865
.
3.
Sumi
,
H.
,
Lee
,
Y. H.
,
Muroyama
,
H.
,
Matsui
,
T.
,
Kamijo
,
M.
,
Mimuro
,
S.
,
Yamanaka
,
M.
,
Nakajima
,
Y.
, and
Eguchi
,
K.
, 2011, “
Effect of Carbon Deposition by Carbon Monoxide Disproportionation on Electrochemical Characteristics at Low Temperature Operation for Solid Oxide Fuel Cells
,”
J. Power Sources
,
196
, pp.
4451
4457
.
4.
Bellido
,
J. D. A.
, and
Assaf
,
E. M.
, 2009, “
Effect of the Y(2)O(3)-ZrO(2) Support Composition on Nickel Catalyst Evaluated in Dry Reforming of Methane
,”
Appl. Catal. A Gen.
,
352
, pp.
179
187
.
5.
Eguchi
,
K.
,
Tanaka
,
K.
,
Matsui
,
T.
, and
Kikuchi
,
R.
, 2009, “
Reforming Activity and Carbon Deposition on Cermet Catalysts for Fuel Electrodes of Solid Oxide Fuel Cells
,”
Catal. Today
,
146
, pp.
154
159
.
6.
He
,
H. P.
, and
Hill
,
J. M.
, 2007, “
Carbon Deposition on Ni/YSZ Composites Exposed to Humidified Methane
,”
Appl. Catal. A Gen.
,
317
, pp.
284
292
.
7.
Kan
,
H.
, and
Lee
,
H.
, 2010, “
Sn-Doped Ni/YSZ Anode Catalysts With Enhanced Carbon Deposition Resistance for an Intermediate Temperature SOFC
,”
Appl Catal. B
,
97
, pp.
108
114
.
8.
Gavrielatos
,
I.
,
Drakopoulos
,
V.
, and
Neophytides
,
S. G.
, 2008, “
Carbon Tolerant Ni-Au SOFC Electrodes Operating Under Internal Steam Reforming Conditions
,”
J. Catal.
,
259
, pp.
75
84
.
9.
DeCaluwe
,
S. C.
,
Grass
,
M. E.
,
Zhang
,
C. J.
,
El Gabaly
,
F.
,
Bluhm
,
H.
,
Liu
,
Z.
,
Jackson
,
G. S.
,
McDaniel
,
A. H.
,
McCarty
,
K. F.
,
Farrow
,
R. L.
,
Linne
,
M. A.
,
Hussain
,
Z.
, and
Eichhorn
,
B. W.
, 2010, “
In Situ Characterization of Ceria Oxidation States in High-Temperature Electrochemical Cells With Ambient Pressure XPS
,”
J. Phys. Chem. C
,
114
, pp.
19853
19861
.
10.
Ahn
,
J. S.
,
Yoon
,
H.
,
Lee
,
K. T.
,
Camaratta
,
M. A.
, and
Wachsman
,
E. D.
, 2009, “
Performance of IT-SOFC with Ce0.9Gd0.1O1.95 Functional Layer at the Interface of Ce0.9Gd0.1O1.95 Electrolyte and Ni-Ce0.9Gd0.1O1.95 Anode
,”
Fuel Cells
,
9
, pp.
643
649
.
11.
Lanzini
,
A.
, and
Leone
,
P.
, 2010, “
Experimental Investigation of Direct Internal Reforming of Biogas in Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
, pp.
2463
2476
.
12.
Hofmann
,
P.
,
Panopoulos
,
K. D.
,
Fryda
,
L. E.
,
Schweiger
,
A.
,
Ouweltjes
,
J. P.
, and
Karl
,
J.
2008, “
Integrating Biomass Gasification With Solid Oxide Fuel Cells: Effect of Real Product Gas Tars, Fluctuations and Particulates on Ni-GDC Anode
,”
Int. J. Hydrogen Energy
,
33
, pp.
2834
2844
.
13.
Vagia
,
E. C.
, and
Lemonidou
,
A. A.
, 2010, “
Investigations on the Properties of Ceria-Zirconia-Supported Ni and Rh Catalysts and Their Performance in Acetic Acid Steam Reforming
,”
J. Catal.
,
269
, pp.
388
396
.
14.
He
,
H. P.
,
Gorte
,
R. J.
, and
Vohs
,
J. M.
, 2005, “
Highly Sulfur Tolerant Cu-Ceria Anodes for SOFCs
,”
Electrochem. Solid St.
,
8
, pp.
A279
A280
.
15.
Kim
,
T.
,
Liu
,
G.
,
Boaro
,
M.
,
Lee
,
S. I.
,
Vohs
,
J. M.
,
Gorte
,
R. J.
,
Al-Madhi
,
O. H.
, and
Dabbousi
,
B. O.
, 2006, “
A Study of Carbon Formation and Prevention in Hydrocarbon-Fueled SOFC
,”
J. Power Sources
,
155
, pp.
231
238
.
16.
Murray
,
E. P.
,
Tsai
,
T.
, and
Barnett
,
S. A.
, 1999, “
A Direct-Methane Fuel Cell With a Ceria-Based Anode
,”
Nature
,
400
, pp.
649
651
.
17.
Costa-Nunes
,
O.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
, 2003, “
A Study of Direct-Conversion SOFC With n-Butane at Higher Fuel Utilization
,”
J. Electrochem. Soc.
,
150
, pp.
A858
A863
.
18.
Mitsos
,
A.
,
Hencke
,
M. M.
, and
Barton
,
P. I.
, 2005, “
Product Engineering for Man-Portable Power Generation Based on Fuel Cells
,”
AIChE J.
,
51
, pp.
2199
2219
.
19.
Draper
,
R.
, and
DiGiuseppe
,
G.
, 2008, “
High Power Density Solid Oxide Fuel Cells for Auxiliary Power Unit Applications
,”
J. Fuel Cell Sci. Tech.
,
5
(3)
, p.
035001
.
20.
Lutsey
,
N.
,
Brodrick
,
C. J.
, and
Lipman
,
T.
, 2007, “
Analysis of Potential Fuel Consumption and Emissions Reductions From Fuel Cell Auxiliary Power Units (APUs) in Long-Haul Trucks
,”
Energy
,
32
, pp.
2428
2438
.
21.
Araki
,
T.
,
Taniuchi
,
T.
,
Sunakawa
,
D.
,
Nagahama
,
M.
,
Onda
,
K.
, and
Kato
,
T.
, 2007, “
Cycle Analysis of Low and High H-2 Utilization SOFC/Gas Turbine Combined Cycle for CO2 Recovery
,”
J. Power Sources
,
171
, pp.
464
470
.
22.
Williams
,
M. C.
, 2007, “
Solid Oxide Fuel Cells: Fundamentals to Systems
,”
Fuel Cells
,
7
, pp.
78
85
.
23.
Armstrong
,
T. J.
, and
Rich
,
J. G.
, 2006, “
Anode-Supported Solid Oxide Fuel Cells With La0.6Sr0.4CoO3-Lambda-Zr0.84Y0.16O2-Delta Composite Cathodes Fabricated by an Infiltration Method
,”
J. Electrochem. Soc.
,
153
, pp.
A515
A520
.
24.
Koh
,
Y. H.
,
Sun
,
J. J.
,
Choi
,
W. Y.
, and
Kim
,
H. E.
, 2006, “
Design and Fabrication of Three-Dimensional Solid Oxide Fuel Cells
,”
J. Power Sources
,
161
, pp.
1023
1029
.
25.
Jiang
,
Y.
,
Wang
,
S. Z.
,
Zhang
,
Y. H.
,
Yan
,
J. W.
, and
Li
,
W. Z.
, 1998, “
Electrochemical Reduction of Oxygen on a Strontium Doped Lanthanum Manganite Electrode
,”
Solid State Ionics
,
110
, pp.
111
119
.
26.
Adler
,
S. B.
, 2004, “
Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes
,”
Chem. Rev.
,
104
, pp.
4791
4843
.
27.
Zhang
,
F.
,
Chen
,
C. H.
,
Hanson
,
J. C.
,
Robinson
,
R. D.
,
Herman
,
I. P.
, and
Chan
,
S. W.
, 2006, “
Phases in Ceria-Zirconia Binary Oxide (1−x)CeO2−xZrO(2) Nanoparticles: The Effect of Particle Size
,”
J. Am. Ceram. Soc.
,
89
, pp.
1028
1036
.
28.
Boaro
,
M.
,
Desinan
,
S.
,
Abate
,
C.
,
Ferluga
,
M.
,
de Leitenburg
,
C.
, and
Trovarelli
,
A.
, 2011, “
Study on Redox, Structural and Electrical Properties of Ce(x)Zr(1−x)O(2) for Applications in SOFC Anodes
,”
J. Electrochem. Soc.
,
158
, pp.
P22
P29
.
29.
Di Monte
,
R.
, and
Kaspar
,
J.
, 2005, “
Nanostructured CeO2-ZrO2 Mixed Oxides
,”
J. Mater. Chem.
,
15
, pp.
633
648
.
30.
Boaro
,
M.
,
Trovarelli
,
A.
,
Hwang
,
J. H.
, and
Mason
,
T. O.
, 2002, “
Electrical and Oxygen Storage/Release Properties of Nanocrystalline Ceria-Zirconia Solid Solutions
,”
Solid State Ionics
,
147
, pp.
85
95
.
31.
Sasaki
,
K.
, and
Maier
,
J.
, 2000, “
Re-Analysis of Defect Equilibria and Transport Parameters in Y2O3-Stabilized ZrO2 Using EPR and Optical Relaxation
,”
Solid State Ionics
,
134
, pp.
303
321
.
32.
Sasaki
,
K.
, and
Teraoka
,
Y.
, 2003, “
Equilibria in Fuel Cell Gases—I. Equilibrium Compositions and Reforming Conditions
,”
J. Electrochem. Soc.
,
150
, pp.
A878
A884
.
33.
Zhu
,
H. Y.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
, 2005, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
, pp.
A2427
A2440
.
34.
Janardhanan
,
V. M.
, and
Deutschmann
,
O.
, 2006, “
CFD Analysis of a Solid Oxide Fuel Cell With Internal Reforming: Coupled Interactions of Transport, Heterogeneous Catalysis and Electrochemical Processes
,”
J. Power Sources
,
162
, pp.
1192
1202
.
You do not currently have access to this content.