Fuel cells generally become promising candidates for the electrical power supply in automotive and stationary applications. The power control of the fuel cell is one of the essential problems. In this paper, a power control concept with a master-slave structure for fuel cell systems is suggested. Within that concept, a DC/DC converter, several slave controllers, and a master controller are combined to achieve the control objectives. The DC/DC converter conditions the power and transfers it from the fuel cell to the load. The task of the slave controller is to maintain the controlled variables at their set points. The master controller has to select the set points for the slave controllers and limits the fuel cell output power, if the requested power exceeds the maximum power, which can be instantaneously produced by the controlled fuel cell system. The proposed control concept is demonstrated by simulations of a proton exchange membrane (PEM) fuel cell system taken from the literature. For that purpose, different controllers are designed based on model-free methods. For the master controller design, two alternative options are discussed: high efficiency tracking and fast power tracking. As shown in the simulation results, high efficiency tracking leads to higher system efficiency, however, an additional energy buffer is required. In contrast, no energy buffer is needed for the option of fast power tracking. However, the system efficiency is lower. The presented control concept is meaningful for systems with dynamic load requirements and can be easily applied to different fuel cell systems due to the model-free design approach.

References

References
1.
Mench
,
M. M.
, 2008,
Fuel Cell Engine
,
Wiley
,
New York
.
2.
Lee
,
C.
and
Yang
,
J.
, 2011, “
Modeling of the Ballard-Mark-V Proton Exchange Membrane Fuel Cell With Power Converters for Applications in Autonomous Underwater Vehicles
,”
J. Power Sources
,
196
, pp.
3810
3823
.
3.
Veneri
,
O.
,
Migliardinia
,
F.
,
Capassoa
,
C.
, and
Corbo
,
P.
, 2011, “
Dynamic Behavior of Li Batteries in Hydrogen Fuel Cell Power Trains
,”
J. Power Sources
,
196
, pp.
9081
9086
.
4.
Fiengo
,
G.
,
Glielmo
,
L.
, and
Vasca
,
F.
, 2007, “
Control of Auxiliary Power Unit for Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
15
(
6
), pp.
1122
1130
.
5.
Liu
,
D.
and
Case
,
S.
, 2006, “
Durability Study of Proton Exchange Membrane Fuel Cells Under Dynamic Testing Conditions With Cyclic Current Profile
,”
J. Power Sources
,
162
, pp.
521
531
.
6.
Varigonda
,
S.
and
Kamat
,
M.
, 2006, “
Control of Stationary and Transportation Fuel Cell Systems: Progress and Opportunities
,”
Comput. Chem. Eng.
,
30
, pp.
1735
1748
.
7.
Pukrashpan
,
J. T.
,
Peng
,
H.
, and
Stefanopoulou
,
A. G.
, 2004,
Control of Fuel Cell Power System—Modeling, Analysis and Feedback Control
,
Springer
,
Berlin
.
8.
He
,
J.
,
Choe
,
S. Y.
, and
Hong
,
C. O.
, 2008, “
Analysis and Control of a Hybrid Fuel Delivery System for a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
185
, pp.
973
984
.
9.
He
,
J.
,
Ahh
,
J.
, and
Choe
,
S. Y.
, 2011, “
Analysis and Control of a Fuel Delivery System Considering a Two-Phase Anode Model of the Polymer Electrolyte Membrane Fuel Cell Stack
,” ‘
J. Power Sources
,
196
, pp.
4655
4670
.
10.
Zhang
,
L. Pang, M.
, and
Quan
,
S.
, 2008, “
Model Predictive Control of Water Management in PEMFC
,”
J. Power Sources
,
180
, pp.
322
329
.
11.
Meyer
,
R. T.
and
Yao
,
B.
, 2006, “
Control of a PEM Fuel Cell Cooling System
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition
, Nov. 5-10, Chicago, USA, Paper No. IMECE2006-14151.
12.
Kunde
,
C.
,
Hanke-Rauschenbach
,
R.
,
Mangold
,
M.
,
Kienle
,
A.
,
Sundmacher
,
K.
,
Wagner
,
S.
, and
Hahn
,
R.
, 2010, “
Temperature and Humidity Control of a Micro PEM Fuel Cell Stack
,”
Fuel Cells
,
10
, pp.
949
959
.
13.
Woo
,
C. H.
and
Benziger
,
J. B.
, 2007, “
PEM Fuel Cell Current Regulation by Fuel Feed Control
,”
Chem. Eng. Sci.
,
62
, pp.
957
968
.
14.
Golbert
,
J.
and
Lewin
,
D. R.
, 2004, “
Model-Based Control of Fuel Cells: (1) Regulatory Control
,”
J. Power Sources
,
135
, pp.
135
151
.
15.
Golbert
,
J.
and
Lewin
,
D. R.
, 2007, “
Model-Based Control of Fuel Cells: (2) Optimal Efficiency
,”
J. Power Sources
,
173
, pp.
298
309
.
16.
Mangold
,
M.
,
Bück
,
A.
, and
Hanke-Rauschenbach
,
R.
, 2010, “
Passivity Based Control of a Distributed PEM Fuel Cell Model
,”
J. Process Control
,
20
, pp.
292
313
.
17.
Kolavennu
,
P. K.
,
Palanki
,
S.
,
Cartes
,
D. A.
, and
Telotte
,
J. C.
, 2008, “
Adaptive Controller for Tracking Power Profile in a Fuel Cell Powered Automobile
”,
J. Process Control
,
18
:
558
567
.
18.
Caux
,
S.
,
Lachaize
,
J.
,
Fadel
,
M.
,
Shott
,
P.
, and
Nicod
,
L.
, 2005, “
Modeling and Control of a Fuel Cell System and Storage Elements in Transport Applications
,”
J. Process Control
,
15
, pp.
481
491
.
19.
Lauzze
,
K. C.
and
Chmielewski
,
D. J.
, 2006, “
Power Control of a Polymer Electrolyte Membrane Fuel Cell
,”
Ind. Eng. Chem. Res.
,
45
, pp.
4661
4670
.
20.
Zenith
,
F.
and
Skogestad
,
S.
, 2007, “
Control of Fuel Cell Power Output
,”
J. Process Control
,
17
, pp.
333
347
.
21.
Zenith
,
F.
and
Skogestad
,
S.
, 2009, “
Control of the Mass and Energy Dynamics of Polybenzimidazole-Membrane Fuel Cells
,”
J. Process Control
,
19
, pp.
415
432
.
22.
Arsie
,
I.
,
Di Domenico
,
A.
,
Pianese
,
C.
, and
Sorrentino
,
M.
, 2007, “
Modeling and Analysis of Transient Behavior of PEM Fuel Cell Hybrid Vehicles
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
3
), pp.
261
271
.
23.
Arsie
,
I.
,
Di Domenico
,
A.
,
Pianese
,
C.
, and
Sorrentino
,
M.
, 2010, “
A Multilevel Approach to the Energy Management of an Automotive Polymer Electrolyte Membrane Fuel Cell System
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, p.
011004
.
24.
Springer
,
T.
,
Zawodzinski
,
T.
, and
Gottesfeld
,
Y.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
25.
Bornhöft
,
A. L.
, 2009, “
Zur Leistungsregelung von Brennstoffzellen
,” Ph.D. thesis, Otto-Von-Güricke-Universität Magdeburg, Magdeburg.
26.
Grötsch, Mangold
,
M.
, and
Kienle
,
A.
, 2009, “
Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters
,”
Energies
,
2
, pp.
71
96
.
27.
Krykunov
,
O.
, 2007, “
Comparison of the DC/DC-Converter for Fuel Cell Applications
,”
Int. J. Elec. Elecs. Eng.
,
1
(1)
, pp.
71
79
.
28.
Wang
,
Q. G.
,
Ye
,
Z.
,
Cai
,
W. J.
, and
Wang
,
C. C.
, 2008,
PID Control for Multivariable Processes
,
Springer
,
New York
.
29.
Bequette
,
B. W.
, 1991, “
Nonlinear Control of Chemical Processes: A Review
,”
Ind. Eng. Chem. Res.
,
30
, pp.
1391
1413
.
30.
Gruber
,
J. K.
,
Bordons
,
C.
, and
Dorado
,
F.
, 2008, “
Nonlinear Control of the Air Feed of a Fuel Cell
,”
Proceeding of the 2008 IEEE American Control Conference
, June 11-13, Seattle, WA, pp.
1121
1126
.
31.
Wong
,
P. K.
,
Song
,
J. H.
,
Mao
,
X. J.
,
Wang
,
D.
,
Tang
,
H. B.
, and
Zhuo
,
B.
, 2010, “
Engine Idle-Speed System Modeling and Control Optimization Using Artificial Intelligence
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
224
, pp.
55
72
.
You do not currently have access to this content.