A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas diffusion layer, microporous layer, and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation, and mass transfer between phases by a nonequilibrium phase change model. Furthermore, the presence of irreducible liquid water is taken into account. In order to account for compression, porous media morphology variations are specified based on the gas diffusion layer (GDL) through-plane strain and intrusion which are stated as a function of compression. These morphology variations affect gas and liquid water transport, and hence liquid water distribution and the risk of blocking active sites. Hence, water transport is studied under GDL compression in order to investigate the qualitative effects. Two simulation cases are compared; one with and one without compression.

References

References
1.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
150
, pp.
A1589
A1598
.
2.
Mazunder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modelling if PEM Fuel Cells
,”
J. Electrochem. Soc.
,
150
, pp.
A1510
A1517
.
3.
Wang
,
C.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
, pp.
4727
4766
.
4.
Berning
,
T.
,
Odgaard
,
M.
, and
Kr
,
S. K.
, 2009, “
A Computational Analysis of Multiphase Flow Through PEMFC Cathode Porous Media Using the Multifluid Approach
,”
J. Electrochem. Soc.
,
156
, pp.
B1301
B1311
.
5.
Gurau
,
V.
,
Thomas
A.
,
Zawodzinski
,
J.
, and
J.
Adin
Mann
,
J.
, 2008, “
Two-Phase Transport in PEM Fuel Cell Cathodes
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
2
), p.
021009
.
6.
Cindrella
,
L.
,
Kannan
,
A.
,
Lin
,
J.
,
Saminathan
,
K.
,
Ho
,
Y.
,
Lin
,
C.
, and
Wertz
,
J.
, 2009. “
Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells—A Review
,”
J. Power Sources
,
194
(
1
), pp.
146
160
.
7.
Hottinen
,
T.
,
Himanen
,
O.
,
Karvonen
,
S.
, and
Nitta
,
I.
, 2007, “
Inhomogeneous Compression of PEMFC Gas Diffusion Layer Part II. Modeling the Effect
,”
J. Power Sources
,
171
, pp.
113
121
.
8.
Nitta
,
I.
,
Karvonen
,
S.
,
Himanen
,
O.
, and
Mikkola
,
M.
, 2008, “
Modelling the Effect of Inhomogeneous Compression of GDL on Local Transport Phenomena in a PEM Fuel Cell
,”
Fuel Cells
,
6
, pp.
410
421
.
9.
Zhou
,
P.
, and
Wu
,
C.
, 2007, “
Numerical Study on the Compression Effect of Gas Diffusion Layer on PEMFC Performance
,”
J. Power Sources
,
170
(
1
), pp.
93
100
.
10.
Spiegel
,
C.
, 2008,
PEM Fuel Cell Modeling and Simulation Using Matlab
,
Academic
,
New York
.
11.
Wu
,
H.
,
Li
,
X.
, and
Berg
,
P.
, 2009, “
On the Modeling of Water Transport in Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
54
(
27
), pp.
6913
6927
.
12.
Dong
,
M.
, and
Dullien
,
F. A. L.
, 2006,
Multiphase Flow Handbook
,
Taylor & Francis
,
London
.
13.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004. “
Modeling Transport in Polymer-Electrolyte Fuel Cells
,”
Chem. Rev.
,
104
(
10
), pp.
4679
4726
.
14.
Wang
,
Y.
,
Basu
,
S.
, and
Wang
,
C.-Y.
, 2008, “
Modeling Two-Phase Flow in PEM Fuel Cell Channels
,”
J. Power Sources
,
179
(
2
), pp.
603
617
.
15.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4595
4611
.
16.
Berning
,
T.
,
Odgaard
,
M.
, and
Kær
,
S. K.
, 2010, “
A Study of Multi-Phase Flow Through the Cathode Side of an Interdigitated Flow Field Using a Multi-Fluid Model
,”
J. Power Sources
,
195
(
15
), pp.
4842
4852
.
17.
Basu
,
S.
,
Wang
,
C.-Y.
, and
Chen
,
K. S.
, 2009, “
Phase Change in a Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
156
(
6
), pp.
B748
B756
.
18.
Meng
,
H.
, 2007, “
Numerical Investigation of Transient Responses of a PEM Fuel Cell Using a Two-Phase Non-Isothermal Mixed-Domain Model
,”
J. Power Sources
,
171
(
2
), pp.
738
746
.
19.
Lampinen
,
M. J.
, and
Fomino
,
M.
, 1993, “Analysis of Free Energy and Entropy Changes for Half-Cell Reactions,”
J. Electrochem. Soc.
,
140
, pp.
3537
3546
.
20.
Eikerling
,
M.
, 2006, “
Water Management in Cathode Catalyst Layers of PEM Fuel Cells—A Structure-Based Model
,”
J. Electrochem. Soc.
,
153
, pp.
E58
E70
.
21.
Udell
,
K. S.
, 1985, “
Heat-Transfer in Porous-Media Considering Phase-Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
,
28
, pp.
485
495
.
22.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A399
A406
.
23.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2007,
Transport Phenomena
,
2nd ed.
,
John Wiley
,
New York
.
24.
Gurau
,
W.
, and
Mann
,
J. A. J.
, 2009, “
A Critical Overview of Computational Fluid Dynamics Multiphase Models for Proton Exchange Membrane Fuel Cells
,”
SIAM J. Appl. Math.
,
70
, pp.
410
454
.
25.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
, 2006, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
,
162
(
1
), pp.
228
238
.
26.
Fishman
,
Z.
, and
Bazylak
,
A.
, 2011, “
Heterogeneous Through-Plane Distributions of Tortuosity, Effective Diffusivity, and Permeability for PEMFC GDLs
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
B247
B252
.
27.
Lai
,
Y.-H.
,
Pinkhas
,
A. R.
,
Ji
,
C.
, and
Kumar
,
V.
, 2008, “
Channel Intrusion of Gas Diffusion Media and the Effect on Fuel Cell Performance
,”
J. Power Sources
,
184
, pp.
120
128
.
28.
Chang
,
W.
,
Hwang
,
J.
,
Weng
,
F.
, and
Chan
,
S.
, 2007, “
Effect of Clamping Pressure on the Performance of a PEM Fuel Cell
,”
J. Power Sources
,
166
(1)
, pp.
149
154
.
29.
Tomadakis
,
M. M.
, and
Robertson
,
T. J.
, 2005, “
Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates With Experimental and Analytical Results
,”
J. Composite Mater.
,
39
(
2
), pp.
163
188
.
30.
Liu
,
X.
,
Civan
,
F.
, and
Evans
,
R. D.
, 1995, “
Correlation of the Non-Darcy Flow Coefficient
,”
J. Can. Pet. Technol.
,
34
, pp.
50
54
.
You do not currently have access to this content.