The potential to improve the CO tolerance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) was investigated by introducing a platinum-ruthenium alloy as anode catalyst. The electrolyte was a H3PO4 doped poly-2,5-benzimidazole polymer (ABPBI). The experiments were carried out at the temperatures between 403 and 443 K with a CO concentration in the H2 feed gas between 0 and 6.5 vol%. The alloy anode catalyst lowers significantly the negative influence of CO in the feed, exceeding the known temperature dependent CO poisoning mitigation in HT-PEMFCs. It was found that the voltage loss of a HT-PEMFC with PtRu anode catalyst was lower than that of a similar cell equipped with Pt anode. The dynamic cell voltage response to a current step was analyzed under CO influence, as well. The PtRu bimetallic anode electrode was found to lower the observed voltage overshoot behavior after a current step, if compared to conventional Pt anode.

References

References
1.
de Bruijn
,
F. A.
,
Dam
,
V. A. T.
, and
Janssen
,
G. J. M.
, 2008, “
Durability and Degradation Issues of PEM Fuel Cell Components
,”
Fuel Cells
,
8
, pp.
3
22
.
2.
Wu
,
J.
,
Yuan
,
X. Z.
,
Martin
,
J. J.
,
Wang
,
H.
,
Zhang
,
J.
,
Shen
,
J.
,
Wu
,
S.
, and
Merida
,
W.
, 2008, “
A Review of Pemfuel Cell Durability: Degradation Mechanisms and Mitigation Strategies
,”
J. Power Sources
,
184
, pp.
104
119
.
3.
Borup
,
R.
,
Meyers
,
J.
,
Pivovar
,
B.
,
Kim
,
Y. S.
,
Mukundan
,
R.
,
Garland
,
N.
,
Myers
,
D.
,
Wilson
,
M.
,
Garzon
,
F.
,
Wood
,
D.
,
Zelenay
,
P.
,
More
,
K.
,
Stroh
,
K.
,
Zawodzinski
,
T.
,
Boncella
,
J.
,
McGrath
,
J. E.
,
Inaba
,
M.
,
Miyatake
,
K.
,
Hori
,
M.
,
Ota
,
K.
,
Ogumi
,
Z.
,
Miyata
,
S.
,
Nishikata
,
A.
,
Siroma
,
Z.
,
Uchimoto
,
Y.
,
Yasuda
,
K.
,
Kimijima
,
K.
, and
Iwashita
,
N.
, 2007, “
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
,”
Chem. Rev.
,
107
, pp.
3904
3951
.
4.
Gottesfeld
,
S.
, and
Pafford
,
J.
, 1988, “
A New Approach to the Problem of Carbon-Monoxide Poisoning in Fuel-Cells Operating at Low-Temperatures
,”
J. Electrochem. Soc.
,
135
, pp.
2651
2652
.
5.
Oetjen
,
H.
,
Schmidt
,
V.
,
Stimming
,
U.
, and
Trila
,
F.
, 1996, “
Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO As Fuel Gas
,”
J. Electrochem. Soc.
,
143
, pp.
3838
3842
.
6.
Trimm
,
D.
, and
Onsan
,
Z.
, 2011, “
Onboard Fuel Conversion for Hydrogen-Fuel-Cell-Driven Vehicles
,”
Catal. Rev.
,
43
, pp.
31
84
.
7.
Stonehart
,
P.
, and
Ross
,
P.
, 1975, “
Commonality of Surface Processes in Electrocatalysis and Gas-Phase Heterogeneous Catalysis
,”
Catal. Rev.
,
12
, pp.
1
35
.
8.
Igarashi
,
H.
,
Fujino
,
T.
, and
Watanabe
,
M.
, 1995, “
Hydrogen Electrooxidation on Platinum Catalysts in the Presence of Trace Carbon-Monoxide
,”
J. Electroanal. Chem.
,
391
, pp.
119
123
.
9.
Lee
,
S.
,
Mukerjee
,
S.
,
Ticianelli
,
E.
, and
McBreen
,
J.
, 1999, “
Electrocatalysis of CO Tolerance in Hydrogen Oxidation Reaction in PEM Fuel Cells
,”
Electrochim. Acta
,
44
, pp.
3283
3293
(1999).
10.
Zhang
,
J.
,
Thampan
,
T.
, and
Datta
,
R.
, 2002, “
Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
149
, pp.
A765
A772
.
11.
Niedrach
,
L.
,
Mckee
,
D.
,
Paynter
,
J.
, and
Danzig
,
I.
, 1967, ”
Electrocatalysts for Hydrogen/Carbon Monoxide Fuel Cell Anodes. I. Platinum-Ruthenium System
,”
Electrochem. Technol.
,
5
, p.
318
.
12.
Gasteiger
,
H.
,
Markovic
,
N.
,
Ross
,
P.
, and
Cairns
,
E.
, 1994, “
CO Electrooxidation on Well-Characterized Pt-Ru Alloys
,”
J. Phys. Chem.
,
98
, pp.
617
625
.
13.
Gasteiger
,
H.
,
Markovic
,
N.
, and
Ross
,
P.
, 1995, “
H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating-Disk Electrode Studies of the Pure Gases Including Temperature Effects
,”
J. Phys. Chem.
,
99
, pp.
8290
8301
.
14.
Gasteiger
,
H.
,
Markovic
,
N.
, and
Ross
,
P.
, 1995, “
H2 and CO electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62 °C
,”
J. Phys. Chem.
,
99
, pp.
16757
16767
.
15.
Gasteiger
,
H.
,
Markovic
,
N.
, and
Ross
,
P.
, 1996, “
Structural Effects in Electrocatalysis: Electrooxidation of Carbon Monoxide on Pt3Sn Single-Crystal Alloy Surfaces
,”
Catal. Lett.
,
36
, pp.
1
8
.
16.
Grgur
,
B.
,
Markovic
,
N.
, and
Ross
,
P.
, 1998, “
Electrooxidation of H2, CO and H2/CO Mixtures on a Well-Characterized Pt-Re Bulk Alloy Electrode and Comparison With Other Pt Binary Alloys
,”
Electrochim. Acta
,
43
, pp.
3631
3635
.
17.
Grgur
,
B.
,
Markovic
,
N.
, and
Ross
,
P.
, 1999, “
The Electro-Oxidation of H2 And H2/CO Mixtures on Carbon-Supported PtxMoy Alloy Catalysts
,”
J. Electrochem. Soc.
,
146
, pp.
1613
1619
.
18.
Mitchell
,
P.
,
Wolohan
,
P.
,
Thompsett
,
D.
, and
Cooper
,
S.
, 1997, “
Experimental and Theoretical Studies of Fuel Cell Catalysts: Density Functional Theory Calculations of H2 Dissociation and CO Chemisorption on Fuel Cell Metal Dimers
,”
J. Mol. Catal. A Chem.
,
119
, pp.
223
233
.
19.
Christoffersen
,
E.
,
Liu
,
P.
,
Ruban
,
A.
,
Skriver
,
H.
, and
Norskov
,
J.
, 2001, “
Anode Materials for Low Temperature Fuel Cells: A Density Functional Theory Study
,”
J. Catal.
,
199
, pp.
123
131
.
20.
Tong
,
Y.
,
Kim
,
H.
,
Babu
,
P.
,
Waszczuk
,
P.
,
Wieckowski
,
A.
, and
Oldfield
,
E.
, 2002, ”
An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst
,”
J. Am. Chem. Soc.
,
124
, pp.
468
473
.
21.
Liu
,
P.
,
Logadottir
,
A.
, and
Norskov
,
J.
, 2003, “
Modeling the Electro-Oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn
,”
Electrochim. Acta
,
48
, pp.
3731
3742
.
22.
Malhotra
,
S.
, and
Datta
,
R.
, 1997, “
Membrane-Supported Nonvolatile Acidic Electrolytes Allow Higher Temperature Operation of Proton-Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
144
, pp.
L23
L26
.
23.
Zawodzinski
,
T.
,
Karuppaiah
,
C.
,
Uribe
,
F.
, and
Gottesfeld
,
S.
, 1997, “
Aspects of CO Tolerance in Polymer Electrolyte Fuel Cells: Some Experimental Findings
,”
Symposium on Electrode Materials and Processes for Energy Conversion and Storage IV, at the 191st Meeting of the Electrochemical Society
,
Montreal
,
Canada
.
24.
Kim
,
J.
,
Park
,
Y.
,
Kobayashi
,
K.
,
Nagai
,
M.
, and
Kunimatsu
,
M.
, 2001, “
Characterization of CO Tolerance of PEMFC by ac Impedance Spectroscopy
,”
Solid State Ionics
,
140
, pp.
313
325
.
25.
Yang
,
C.
,
Costamagna
,
P.
,
Srinivasan
,
S.
,
Benziger
,
J.
, and
Bocarsly
,
A.
, 2001, “
Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
103
, pp.
1
9
.
26.
Si
,
Y.
,
Jiang
,
R.
,
Lin
,
J.
,
Kunz
,
H.
, and
Fenton
,
J.
, 2004, “
CO Tolerance of Carbon-Supported Platinum Ruthenium Catalyst at Elevated Temperature and Atmospheric Pressure in a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
151
, pp.
A1820
A1824
.
27.
Jiang
,
R.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
, 2006, “
Influence of Temperature and Relative Humidity on Performance and CO Tolerance of PEM Fuel Cells With Nafion (R)-Teflon (R)-Zr(HPO4)(2)
,”
Electrochim. Acta
,
51
, pp.
5596
5605
.
28.
Sung
,
L.-Y.
,
Hwang
,
B.-J.
,
Hsueh
,
K.-L.
, and
Tsau
,
F.-H.
, 2010, “
Effects of Anode Air Bleeding on the Performance of CO-Poisoned Proton-Exchange Membrane Fuel Cells
,”
J. Power Sources
,
195
, pp.
1630
1639
.
29.
Sapountzi
,
F.
,
Tsampas
,
M. N.
, and
Vayenas
,
C. G.
, 2007, “
Electrocatalysis and Electrochemical Promotion of CO Oxidation in PEM Fuel Cells: The Role of Oxygen Crossover
,”
Top. Catal.
,
44
, pp.
461
468
.
30.
Watanabe
,
M.
, and
Motoo
,
S.
, 1975, “
Electrocatalysis by Ad-Atoms. 1. Enhancement of Oxidation of Methanol on Platinum and Palladium by Gold Ad-Atoms
,”
J. Electroanal. Chem.
,
60
, pp.
259
266
.
31.
Watanabe
,
M.
, and
Motoo
,
S.
, 1975, “
Electrocatalysis by Ad-Atoms. 3. Enhancement of Oxidation of Carbon-Monoxide on Platinum by Ruthenium Ad-Atoms
,”
J. Electroanal. Chem.
,
60
, pp.
275
283
.
32.
Krausa
,
M.
, and
Vielstich
,
W.
, 1994, “
Study of the Electrocatalytic Influence of Pt/Ru and Ru on the Oxidation of Residues of Small Organic-Molecules
,”
J. Electroanal. Chem.
,
379
, pp.
307
314
.
33.
Markovic
,
N.
, and
Ross
,
P.
, 2002, “
Surface Science Studies of Model Fuel Cell Electrocatalysts
,”
Surf. Sci. Rep.
,
45
, pp.
121
229
.
34.
Dhar
,
H.
,
Christner
,
L.
, and
Kush
,
A.
, 1987, “
Nature of CO Adsorption During H2 Oxidation in Relation to Modeling for CO Poisoning of a Fuel-Cell Anode
,”
J. Electrochem. Soc.
,
134
, pp.
3021
3026
.
35.
Li
,
Q.
,
He
,
R.
,
Jensen
,
J.
, and
Bjerrum
,
N.
, 2003, “
Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating Above 100 Degrees
,”
Chem. Mater.
,
15
, pp.
4896
4915
.
36.
Reichman
,
S.
,
Ulus
,
A.
, and
Peled
,
E.
, 2007, “
PTFE-Based Solid Polymer Electrolyte Membrane for High Temperature Fuel Cell Applications
,”
J. Electrochem. Soc.
,
154
, pp.
B327
B333
(2007).
37.
Wainright
,
J.
,
Wang
,
J.
,
Weng
,
D.
,
Savinell
,
R.
, and
Litt
,
M.
, 1995, “
Acid-Doped Polybenzimidazoles—A New Polymer Electrolyte
,”
J. Electrochem. Soc.
,
142
, pp.
L121
L123
.
38.
Savinell
,
R.
,
Yeager
,
E.
,
Tryk
,
D.
,
Landau
,
U.
,
Wainright
,
J.
,
Weng
,
D.
,
Lux
,
K.
,
Litt
,
M.
, and
Rogers
,
C.
, 1994, “
A Polymer Electrolyte for Operation at Temperatures Up to 200 °C
,”
J. Electrochem. Soc.
,
141
, pp.
L46
L48
.
39.
Zhang
,
J.
,
Xie
,
Z.
,
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
,
Navessin
,
T.
,
Shi
,
Z.
,
Song
,
D.
,
Wang
,
H.
,
Wilkinson
,
D. P.
,
Liu
,
Z.-S.
, and
Holdcroft
,
S.
, 2006, “
High Temperature PEM Fuel Cells
,”
J. Power Sources
,
160
, pp.
872
891
.
40.
Li
,
Q.
,
He
,
R.
,
Jensen
,
J.
, and
Bjerrum
,
N.
, 2004, “
PBI-Based Polymer Membranes for High Temperature Fuel Cells—Preparation, Characterization and Fuel Cell Demonstration
,”
Fuel Cells
,
4
, pp.
147
159
.
41.
Li
,
Q.
,
Jensen
,
J. O.
,
Savinell
,
R. F.
, and
Bjerrum
,
N. J.
, 2009, “
High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells
,”
Prog. Polym. Sci.
,
34
, pp.
449
477
.
42.
Mader
,
J.
,
Xiao
,
L.
,
Schmidt
,
T. J.
, and
Benicewicz
,
B. C.
, 2008,
Fuel Cells II; Advances in Polymer Science
,
Springer
,
Berlin
, Vol.
216
, pp.
63
124
.
43.
Li
,
Q.
,
He
,
R.
,
Gao
,
J.
,
Jensen
,
J.
, and
Bjerrum
,
N.
, 2003, “
The CO Poisoning Effect in PEMFCS Operational at Temperatures Up to 200 °C
,”
J. Electrochem. Soc.
,
150
, pp.
A1599
A1605
.
44.
Holleman
,
A.
, and
Wiberg
,
E.
, 1995,
Lehrbuch der Anorganischen Chemie
, Vol.
1
, 10
1st
ed.,
N.
Wiberg
, ed.,
de Gruyter
,
Berlin
, pp.
725
793
.
45.
Tang
,
Y.
,
Zhang
,
J.
,
Song
,
C.
, and
Zhang
,
J.
, 2007, “
Single PEMFC Design and Validation for High Temperature MEA Testing and Diagnosis Up to 300 °C
,”
Electrochem. Solid State
,
10
, pp.
B142
B146
.
46.
Stevens
,
D.
, and
Dahn
,
J.
, 2005, “
Thermal Degradation of the Support in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells
,”
Carbon
,
43
, pp.
179
188
.
47.
Sundmacher
,
K.
, 2010, “
Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants
,”
Ind. Eng. Chem. Res.
,
49
, pp.
10159
10182
.
48.
Heidebrecht
,
P.
,
Hartono
,
B.
,
Hertel
,
C.
, and
Sundmacher
,
K.
, 2010, “
Biomass-Based Fuel Cell Power Plants: Evaluation of Novel Reactors and Process Designs
,”
Ind. Eng. Chem. Res.
,
49
(
21
), pp.
10859
10875
.
49.
Modestov
,
A. D.
,
Tarasevich
,
M. R.
,
Filimonov
,
V. Y.
, and
Davydova
,
E. S.
, 2010, “
CO Tolerance and CO Oxidation at Pt and Pt-Ru Anode Catalysts in Fuel Cell With Polybenzimidazole-H3PO4 Membrane
,”
Electrochim. Acta
,
55
, pp.
6073
6080
.
50.
Zhang
,
J.
, and
Datta
,
R.
, 2003, “
Online Monitoring of Anode Outlet CO Concentration in PEM Fuel Cells
,”
Electrochem. Solid State
,
6
, pp.
A5
A8
.
51.
Katsuhiko
,
O.
, 1997,
Modern Control Engineering
, Vol.
1
,
3rd ed.
,
A. M. L.
Dworkin
, ed.,
Simon & Schuster
,
Saddle River, NJ
, pp.
136
141
.
52.
Daletou
,
M. K.
,
Kallitsis
,
J. K.
,
Voyiatzis
,
G.
, and
Neophytides
,
S. G.
, 2009, “
The Interaction of Water Vapors With H3PO4 Imbibed Electrolyte Based on PBI/Polysulfone Copolymer Blends
,”
J. Membr. Sci.
,
326
, pp.
76
83
.
You do not currently have access to this content.