A 500 W stack operating at medium temperatures was designed, manufactured and tested. Nanocomposite Nafion membranes/electrodes (MEA1-NZr) assemblies, containing a commercial yttria stabilized zirconia (YSZ) as a filler, were developed to work over 80 °C. A 100 cm2 cell active area with a parallel serpentine flow field as reactants distributor was used for stack realization. Preliminary electrochemical tests in a single cell and in two-cells short stack were performed at 120 °C, 3 barabs and fully hydrated gases, reaching a rated power at 50 A of about 30W in single cell and 70W in short stack. Finally, a 20 cells stack was assembled, with composite MEA-NZr, and tested at 120 °C, 3 barabs and partially humidified gases. In these conditions, a power of 433 W at 50 A was reached. Comparing these results with the short stack performance at the same current (50 A), a 24% of power loss, which corresponds to 7 W/cell, was recorded. This performance reduction could be explained considering the scale up effect passing from 2-cells to 20-cells stack. The obtained results show that the developed composite membrane-electrodes assemblies and the designed stack are suitable for working at higher temperature than traditional polymer electrolyte membrane fuel cells.

References

References
1.
Jones
,
D. J.
, and
Rozière
,
J.
, 2003, “
Inorganic/Organic Composite Membranes
,”
Handbook of Fuel Cells, Fundamentals Technology and Applications
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
,
New York
, Chap. 35, pp.
447
455
.
2.
Alberti
,
G.
, and
Casciola
,
M.
, 2003, “
Composite Membranes for Medium-Temperature PEM Fuel Cells
,”
Annu. Rev. Mater. Res.
,
33
, pp.
129
154
.
3.
Carbone
,
A.
,
Casciola
,
M.
,
Cavalaglio
,
S.
,
Costantino
,
U.
,
Ornelas
,
R.
,
Fodale
,
I.
,
Saccà
,
A.
, and
Passalaqua
,
E.
, 2004, “
Composite Nafion Membranes based on PWA-Zirconia for PEFCs operatine at Medium Temperature
,”
J. New Mater. Electrochem. Syst.
,
7
, pp.
1
5
.
4.
Saccà
,
A.
,
Carbone
,
A.
Passalacqua
,
E.
,
D’Epifanio
,
A.
,
Licoccia
,
S.
,
Traversa
,
E.
,
Sala
,
E.
,
Traini
,
F.
, and
Ornelas
,
R.
, 2005, “
Nafion-TiO2 Hybrid Membranes for Medium Temperature Polymer Electrolyte Fuel Cells (PEFCs)
,”
J. Power Sources
,
152
, pp.
16
21
.
5.
Watanabe
,
M.
,
Uchida
,
H.
,
Seki
,
Y.
,
Emori
,
M.
, and
Stonehart
,
P.
, 1996, “
Self-Humidifying Polymer Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
,
143
, pp.
3847
3852
.
6.
Watanabe
,
M.
,
Uchida
,
Y.
, and
Emori
,
M.
, 1998, “
Analyses of Self-Humidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
,
145
, pp.
1137
1141
.
7.
Antonucci
,
P. L.
,
Aricò
,
A. S.
,
Cretì
,
P.
,
Ramunni
,
E.
, and
Antonucci
,
V.
, 1999, “
Investigation of a Direct Methanol Fuel Cell Based on a Composite Nafion-Silica Electrolyte for High Temperature Operation
,”
Solid State Ionics
,
125
, pp.
431
437
.
8.
Saccà
,
A.
,
Gatto
,
I.
,
Carbone
,
A.
,
Pedicini
,
R.
, and
Passalacqua
,
E.
, 2006, “
ZrO2-Nafion Composite Membranes for Polymer Electrolyte Fuel Cells (PEFCs) at Intermediate Temperature
,”
J. Power Sources
,
163
, pp.
47
51
.
9.
Malhotra
,
S.
, and
Datta
,
R.
, 1997, “
Membrane-Supported Nonvolatile Acidic Electrolytes Allow Higher Temperature Operation of Proton-Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
144
, pp.
L23
L26
.
10.
Tazi
,
B.
, and
Savadogo
,
O.
, 2000, “
Parametres of PEM Fuel-Cells Based on New Membranes Fabricated from Nafion, Silicotungstic Acid and Thiophene
,”
Electrochim. Acta
,
45
, pp.
4329
4339
.
11.
Tazi
,
B.
, and
Savadogo
,
O.
, 2001, “
Effect of Various Heteropolyacids (HPAs) on the Characteristics of Nafion-HPAS Membranes and Their H2/O2 Polymer Electrolyte Fuel Cell Parameters
,”
J. New Mater. Electrochem. Syst.
,
4
, pp.
187
196
.
12.
Staiti
,
P.
,
Aricò
,
A. S.
,
Baglio
,
V.
,
Lufrano
,
F.
,
Passalacqua
,
E.
, and
Antonucci
,
V.
, 2001, “
Hybrid Nafion -Silica Membranes Doped with Heteropolyacids for Application in Direct Methanol Fuel Cells
,”
Solid State Ionics
,
145
, pp.
101
107
.
13.
Saccà
,
A.
,
Carbone
,
A.
,
Pedicini
,
R.
,
Marrony
,
M.
,
Barrera
,
R.
,
Elomaa
,
M.
, and
Passalacqua
,
E.
, 2008, “
Phosphotungstic Acid Supported on a Nano-Powdered ZrO2 as a Filler in Nafion Based Membranes for Polymer Electrolyte Fuel Cells (PEFCs)
,”
Fuel Cells
3-4
, pp.
225
235
.
14.
Gatto
,
I.
,
Saccà
,
A.
,
Carbone
,
A.
,
Pedicini
,
R.
, and
Passalacqua
,
E.
, 2006, “
MEAs for Polymer Electrolyte Fuel Cell (PEFC) Working at Medium Temperature
,”
J. Fuel Cell Sci. Technol.
,
3
, pp.
361
365
.
15.
Peighambardoust
,
S. J.
,
Rowshanzamir
,
S.
, and
Amjadi
,
M.
, 2010, “
Review of the Proton Exchange Membranes for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
35
, pp.
9349
9384
.
16.
Lagur-Grodzinski
,
J.
, 2007, “
Review - Polymeric Materials for Fuel Cells: Concise Review of Recent Studies
,”
Polym. Adv. Technol.
,
18
, pp.
785
799
.
17.
Friedl
,
A.
,
Fraser
,
S. D.
,
Baumgartner
,
W. R.
, and
Hacker
,
V.
, 2008, “
Experimental Analysis of Internal Gas Flow Configurations for a Polymer Electrolyte Membrane Fuel Cell Stack
,”
J. Power Sources
,
185
, pp.
248
260
.
18.
Zhang
,
J.
,
Xie
,
Z.
,
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
,
Navessin
,
T.
,
Shi
,
Z.
,
Song
,
D.
,
Wang
,
H.
,
Wilkinson
,
D. P.
,
Liu
,
Z. S.
, and
Holdcroft
,
S.
, 2006, “
High Temperature PEM Fuel Cells
,”
J. Power Sources
,
160
, pp.
872
891
.
19.
Yu
,
S. H.
,
Sohn
,
S.
,
Nam
,
J. H.
, and
Kim
,
C.-J.
, 2009, “
Numerical Study to Examine the Performance of Multi-Pass Serpentine Flow-Fields for Cooling Plates in Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
194
, pp.
697
703
.
20.
Matian
,
M.
,
Marquis
,
A.
, and
Brandon
,
N.
, 2011, “
Model Based Design and Test of Cooling Plates for an Air-Cooled Polymer Electrolyte Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
36
, pp.
6051
6066
.
21.
Barbir
,
F.
,
Gorgun
,
H.
, and
Wang
,
X.
, 2005, “
Relationship Between Pressure Drop and Cell Resistance as a Diagnostic Tool for PEM Fuel Cells
,”
J. Power Sources
,
141
, pp.
96
101
.
22.
Weng
,
F.-B.
,
Jou
,
B.-S.
,
Su
,
A.
,
Chan
,
S. H.
, and
Chi
,
P.-H.
, 2007, “
Design, Fabrication and Performance Analysis of a 200W PEM Fuel Cell Short Stack
,”
J. Power Sources
,
171
, pp.
179
185
.
23.
Chen
,
C.-H.
,
Jung
,
S.-P.
, and
Yen
,
S.-C.
2007, “
Flow Distribution in the Manifold of PEM Fuel Cell Stack
,”
J. Power Sources
,
173
, pp.
249
263
.
24.
Saccà
,
A.
,
Pedicini
,
R.
,
Carbone
,
A.
,
Gatto
,
I.
, and
Passalacqua
,
E.
, 2007, “
Comparative Investigation on Nano-sized SiO2 as a Filler for Proton Exchange Membranes (PEM) Fuel Cells
,”
ECS Trans.
,
11
(
1
), pp.
1553
1557
.
25.
Saccà
,
A.
,
Carbone
,
A.
,
Pedicini
,
R.
,
Portale
,
G.
,
D’Ilario
,
L.
,
Longo
,
A.
,
Martorana
,
A.
, and
Passalacqua
,
E.
, 2006, “
Structural and Electrochemical Investigation on Re-cast Nafion Membranes for Polymer Electrolyte Fuel Cells (PEFCs) Application
,”
J. Membr. Sci.
,
278
, pp.
105
113
.
26.
Lufrano
,
F.
,
Passalacqua
,
E.
,
Squadrito
,
G.
,
Patti
,
A.
, and
Giorgi
,
L.
, 1999, “
Improvement in the Diffusion Characteristics of Low Pt-Loaded Electrodes for PEFCs
,”
J. Appl. Electrochem.
,
29
, pp.
445
448
.
27.
Squadrito
,
G.
,
Barbera
,
O.
,
Giacoppo
,
G.
,
Urbani
,
F.
, and
Passalacqua
,
E.
, 2007, “
Computer Aided Fuel Cell Design and Scale-up, Comparison Between Model and Experimental Results
,”
J. Appl. Electrochem.
,
37
, pp.
87
93
.
28.
Barbir
,
F.
, 2005,
PEM Fuel Cells - Theory Practice
,
Elsevier
,
New York
.
You do not currently have access to this content.