(La0.6Sr0.4)(Co0.2Fe0.8)O3–δ (LSCF) has been promised as a cathode material of solid oxide fuel cells at intermediate temperatures. Despite the many previous studies of LSCF that have been reported, the role of Co and Fe atoms in the oxygen ion conduction is still unclear. In this work, we aimed at presenting each valence, oxygen chemical diffusion coefficient (Dchem) and activation energy (Ea) related to Co and Fe in LSCF by in situ X-ray absorption spectroscopy (XAS) at high temperatures and during reduction. For quantitative analysis of X-ray absorption near edge structure (XANES) spectroscopy, these results indicated that the Co valence decreased more easily than the Fe valence. On the other hand, from relaxation plots of the Co and Fe valence during reduction, the values of Dchem and Ea related to Co and Fe were nearly equal. Considering equations showing the oxygen ion conductivity, these results would indicate that oxygen ion conductivity was contributed by Co with more oxygen vacancies rather than Fe. According to these results, a structural model with and without oxygen vacancies and the oxygen ion conduction mechanism of LSCF was speculated, that is, we found that oxygen ion conductivity was more closely related to Co than Fe in LSCF by direct observations of in situ XAS.

References

References
1.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
,
135
, pp.
305
313
.
2.
Stevenson
,
J. W.
,
Armstrong
,
T. R.
,
Carneim
,
R. D.
,
Peederson
,
L. R.
, and
Weber
,
W. J.
, 1996, “
Electrochemical Properties of Mixed Conducting Perovskites
,”
J. Electrochem. Soc.
,
143
, pp.
2722
2729
.
3.
Minh
,
N. Q.
, 1993, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
,
76
, pp.
563
588
.
4.
Bucher
,
E.
,
Sitte
,
W.
,
Caraman
,
G. B.
,
Cherepanov
,
V. A.
,
Aksenova
,
T. V.
, and
Ananyev
,
M. V.
, 2006, “
Defect Equilibria and Partial Molar Properties of (La,Sr)(Co,Fe)O3−δ
,”
Solid State Ionics
,
177
, pp.
3109
3115
.
5.
Mantzavinos
,
D.
,
Hartley
,
A.
,
Metcalfe
,
I. S.
, and
Sahibzada
,
M.
, 2000, “
Oxygen Stoichiometries in La1-xSrxCo1-yFeyO3−δ Perovskites at Reduced Oxygen Partial Pressures
,”
Solid State Ionics
,
134
, pp.
103
109
.
6.
Badwal
,
S. P. S.
,
Jiang
,
S. P.
,
Love
,
J.
,
Nowotny
,
J.
,
Rekas
,
M.
, and
Vance
,
E. R.
, 2001, “
Chemical Diffusion in Perovskite Cathodes of Solid Oxide Fuel Cells: The Sr Doped LaMn1-xMxO3 (M=Co, Fe) Systems
,”
Ceram. Int.
,
27
, pp.
419
429
.
7.
Hashimoto
,
S.
,
Fukuda
,
Y.
,
Kuhn
,
M.
,
Sato
,
K.
,
Yashiro
,
K.
, and
Mizusaki
,
J.
, 2010, “
Oxygen Nonstoichiometry and Thermo-Chemical Stability of La0.6Sr0.4Co1-yFeyO3−δ (y = 0.2, 0.4, 0.6, 0.8)
,”
Solid State Ionics
,
181
, pp.
1713
1719
.
8.
Teraoka
,
Y.
,
Zhang
,
H. M.
,
Okamoto
,
K.
, and
Yamazoe
,
N.
, 1988, “
Mixed Ionic-Electronic Conductivity of La1-xSrxCo1-yFeyO3−δ Perovskite-Type Oxides
,”
Mater. Res. Bull.
,
23
, pp.
51
58
.
9.
Teraoka
,
Y.
,
Zhang
,
H. M.
,
Furukawa
,
S.
, and
Yamazoe
,
N.
, 1985, “
Oxygen Permeation Through Perovskite-Type Oxides
,”
Chem. Lett.
,
11
, pp.
1743
1746
.
10.
Carter
,
S.
,
Selcuk
,
J.
,
Chater
,
R.
,
Kajda
,
J.
,
Kilner
,
J. A.
, and
Steele
,
B. C. H.
, 1992, “
Oxygen Transport in Selected Nonstoichiometric Perovskite-Structure Oxides
,”
Solid State Ionics
,
53-56
, pp.
597
605
.
11.
Ftikos
,
Ch.
,
Carter
,
S.
, and
Steele
,
B. C. H.
, 1993, “
Mixed Electronic/Ionic Conductivity of the Solid Solution La(1-x)SrxCo(1-y)NiyO3−δ (x: 0.4, 0.5, 0.6 and y: 0.2, 0.4, 0.6)
,”
J. Eur. Ceram. Soc.
,
12
, pp.
79
86
.
12.
Katsuki
,
M.
,
Wang
,
S.
,
Dokiya
,
M.
, and
Hashimoto
,
T.
, 2003, “
High Temperature Properties of La0.6Sr0.4Co0.8Fe0.2O3−δ Oxygen Nonstoichiometry and Chemical Diffusion Constant
,”
Solid State Ionics
,
156
, pp.
453
461
.
13.
Gur
,
T. M.
,
Belzner
,
A.
, and
Huggins
,
R. A.
, 1992, “
A New Class of Oxygen Selective Chemically Driven Nonporous Ceramic Membranes. Part I. A-Site Doped Perovskites
,”
J. Membr. Sci.
,
75
, pp.
151
162
.
14.
Lankhorst
,
M. H. R.
, and
Bouwmeeter
,
H. J. M.
, 1997, “
Determination of Oxygen Nonstoichiometry and Diffusivity in Mixed Conducting Oxides by Oxygen Coulometric Titration. I. Chemical Diffusion in La0.8Sr0.2CoO3−δ
,”
J. Electrochem. Soc.
,
144
, pp.
1261
1267
.
15.
Elshof ten
,
J. E.
,
Lankhorst
,
M. H. R.
, and
Bouwmeester
,
H. J. M.
, 1997, “
Chemical Diffusion and Oxygen Exchange of La0.6Sr0.4Co0.6Fe0.4O3−δ
,”
Solid State Ionics
,
99
, pp.
15
22
.
16.
Yasuda
,
I.
, and
Hishinuma
,
M.
, 1995, “
Chemical Diffusion in Polycrystalline Calcium-Doped Lanthanum Chromites
,”
J. Solid State Chem.
,
115
, pp.
152
157
.
17.
Yasuda
,
I.
, and
Hishinuma
,
M.
, 1995, “
Electrical Conductivity and Chemical Diffusion Coefficient of Sr-Doped Lanthanum Chromites
,”
Solid State Ionics
,
80
, pp.
141
150
.
18.
Mogensen
,
M.
,
Lybye
,
D.
,
Bonanos
,
N.
,
Hendriksen
,
P. V.
, and
Poulsen
,
F. W.
, 2004, “
Factors Controlling the Oxide Ion Conductivity of Fluorite and Perovskite Structured Oxides
,”
Solid State Ionics
,
174
, pp.
279
286
.
19.
Yashima
,
M.
, and
Kamioka
,
T.
, 2008, “
Neutron Diffraction Study of the Perovskite-Type Lanthanum Cobaltite La0.6Sr0.4Co0.8Fe0.2O3−δ at 1260 °C and 394 °C
,”
Solid State Ionics
,
178
, pp.
1939
1943
.
20.
Itoh
,
T.
,
Nishida
,
Y.
,
Tomita
,
A.
,
Fujie
,
Y.
,
Kitamura
,
N.
,
Idemoto
,
Y.
,
Osaka
,
K.
,
Hirosawa
,
I.
, and
Igawa
,
N.
, 2009, “
Determination of the Crystal Structure and Charge Density of (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33 by Rietveld Refinement and Maximum Entropy Method Analysis
,”
Solid State Commun.
,
149
, pp.
41
44
.
21.
Itoh
,
T.
,
Shirasaki
,
S.
,
Fujie
,
Y.
,
Kitamura
,
N.
,
Idemoto
,
Y.
,
Osaka
,
K.
,
Ofuchi
,
H.
,
Hirayama
,
S.
,
Honma
,
T.
, and
Hirosawa
,
I.
, 2010, “
Study of Charge Density and Crystal Structure of (La0.75Sr0.25)MnO3.00 and (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33−δ at 500-900 K by in Situ Synchrotron X-Ray Diffraction
,”
J. Alloys Compd.
,
491
, pp.
527
535
.
22.
Itoh
,
T.
,
Hirai
,
T.
,
Yamashita
,
J.
,
Watanabe
,
S.
,
Kawata
,
E.
,
Kitamura
,
N.
,
Idemoto
,
Y.
, and
Igawa
,
N.
, 2010, “
Study of Oxygen Ion Diffusion in (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33−δ Through in-Situ Neutron Diffractions at 300 and 720 K
,”
Physica B
,
405
, pp.
2091
2096
.
23.
Jonker
,
G. H.
, and
Van Santen
,
J. H.
, 1953, “
Magnetic Compounds With Perovskite Structure III. Ferromagnetic Compounds of Cobalt
,”
Physica
,
19
, pp.
120
130
.
24.
Izumi
,
F.
, and
Momma
,
K.
, 2007, “
Three-Dimensional Visualization in Powder Diffraction
,”
Solid State Phenom.
,
130
, pp.
15
20
.
25.
Momma
,
K.
, and
Izumi
,
F.
, 2011, “
VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data
,”
J. Appl. Crystallogr.
,
44
, pp.
1272
1276
.
26.
Ravel
,
B.
, and
Newville
,
M.
, 2005, “
ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT
,”
J. Synchrotron Radiat.
,
12
, pp.
537
541
.
27.
Newville
,
M.
, 2001, “
IFEFFIT: Interactive EXAFS Analysis and FEFF Fitting
,”
J. Synchrotron Radiat.
,
8
, pp.
322
324
.
28.
Mineshige
,
A.
,
Abe
,
J.
,
Kobune
,
M.
,
Uchimoto
,
Y.
, and
Yazawa
,
T.
, 2006, “
Oxygen Nonstoichiometry, Mixed Valency and Mixed Conduction in (La,Sr)(Co,Fe)O3−δ
,”
Solid State Ionics
,
177
, pp.
1803
1806
.
29.
Tai
,
L.-W.
,
Nasrallah
,
M. M.
,
Anderson
,
H. U.
,
Sparlin
,
D. M.
, and
Sdhlin
,
S. R.
, 1995, “
Structure and Electrical Properties of La1-xSrxCo1-yFeyO3. Part 1. The System La0.8Sr0.2Co1-yFeyO3
,”
Solid State Ionics
,
76
, pp.
259
271
.
30.
Lein
,
H. L.
,
Wiik
,
K.
, and
Grande
,
T.
, 2006, “
Thermal and Chemical Expansion of Mixed Conducting La0.5Sr0.5Fe1-xCoxO3−δ Materials
,”
Solid State Ionics
,
177
, pp.
1795
1798
.
31.
Mizusaki
,
J.
,
Yoshihiro
,
M.
,
Yamauchi
,
S.
, and
Fueki
,
K.
, 1985, “
Nonstoichiometry and Defect Structure of the Perovskite-Type Oxides La1-xSrxFeO3−δ
,”
J. Solid State Chem.
,
58
, pp.
257
266
.
32.
Mizusaki
,
J.
,
Mima
,
Y.
,
Yamauchi
,
S.
, and
Fueki
,
K.
, 1989, “
Nonstoichiometry of the Perovskite-Type Oxides La1-xSrxCoO3−δ
,”
J. Solid State Chem.
,
80
, pp.
102
111
.
33.
Price
,
J. B.
, and
Wagner
,
J. B.
, Jr.
, 1966, “
Determination of the Chemical Diffusion Coefficient in Single Crystals of CoO and NiO
,”
Z. Phys. Chem., Neue Folge
,
49
, pp.
257
270
.
34.
Berenov
,
A. V.
,
MacManus-Driscoll
,
J. L.
, and
Kilner
,
J. A.
, 2001, “
Observation of the Compensation Law During Oxygen Diffusion in Perovskite Materials
,”
Int. J. Inorg. Mater.
,
3
, pp.
1109
1111
.
You do not currently have access to this content.