This study fabricates a micro proton exchange membrane fuel cell (PEMFC) using micro electro mechanical systems (MEMS) technology. The active area of the membrane is 2 cm × 2 cm (4 cm2). The study is divided into two categories: [(1) the parametric experimental investigation, and (2) the durability test. This work is an attempt to find out how several parameters, including reheat temperature, the material of the current collector plates, the open ratio, and different cathode gases affect micro PEFMC performance. According to the experimental results obtained, both the conducting area and the material of the current collector plates exert great influences on the performance of the micro PEMFC, especially in the conducting area. The cell’s performance is finite when the gas reheat temperature is increased. The results show that the cell performance is better for an open ratio of 75% as compared to ratios of 50% and 67%. The concentration polarization is improved by increasing the air flow rate at high current densities, and if the GDL diffusive capability in the latter cell could be promoted, the differences between these two cells’ performances would be reduced. Furthermore, the performance at an operating voltage of 0.6 V was the most stable one among the four cases tested, and the performance deviation at a fixed operating voltage of 0.4 V was less than ±2.2%.

References

References
1.
Yu
,
J.
,
Cheng
,
P.
,
Ma
,
Z.
, and
Yi
,
B.
, 2003, “
Fabrication of Miniature Silicon Wafer Fuel Cells With Improved Performance
,”
J. Power Sources
,
124
, pp.
40
46
.
2.
Meyers
,
J. P.
, and
Maynard
,
H. J.
, 2002, “
Design Considerations for Miniaturized PEM Fuel Cells
,”
J. Power Sources
,
109
, pp.
76
88
.
3.
Lee
,
C.-Y.
, and
Chuang
,
C.-W.
, 2007, “
A Novel Integration Approach for Combining the Components to Minimize a Micro-Fuel Cell
,”
J. Power Sources
,
172
, pp.
115
120
.
4.
He
,
S.
,
Mench
,
M. M.
, and
Tadigadapa
,
S.
, 2006, “
Thin Film Temperature Sensor for Real-Time Measurement of Electrolyte Temperature in a Polymer Electrolyte Fuel Cell
,”
Sens. Actuators, A
,
125
, pp.
170
177
.
5.
McIntyre
,
T. J.
,
Allison
,
S. W.
,
Maxey
,
L. C.
, and
Cates
,
M. R.
, 2003, “
Fiber Optic Temperature Sensors for PEM Fuel Cells
,” Progress Report.
6.
Nguyen
,
T. R.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
140
, pp.
2178
2186
.
7.
Kelly
,
S. C.
,
Deluga
,
G. A.
, and
Smyrl
,
W. H.
, 2002, “
Miniature Fuel Cells Fabricated on Silicon Substrates
,”
AIChE J.
,
48
, pp.
1071
1082
.
8.
Shah
,
K.
,
Shin
,
W. C.
, and
Besser
,
R. S.
, 2003, “
Novel Microfabrication Approaches for Directly Patterning PEM Fuel Cell Membranes
,”
J. Power Sources
,
123
, pp.
172
181
.
9.
Cha
,
S. W.
,
Lee
S. J.
,
Park
,
Y. I.
, and
Prinz
,
F. B.
, 2003, “
Investigation of Transport Phenomena in Micro Flow Channels for Miniature Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
2003-1709
, pp.
143
148
.
10.
Lu
,
G. Q.
,
Wang
,
C. Y.
,
Yen
,
T. J.
, and
Zhang
,
X.
, 2004, “
Development and Characterization of a Silicon-Based Micro Direct Methanol Fuel Cell
,”
Electrochim. Acta
,
49
, pp.
821
828
.
11.
Schmitz
,
A.
,
Tranitz
,
M.
,
Wagner
,
S.
,
Hahn
,
R.
, and
Hebling
,
C.
, 2003, “
Planar Self-Breathing Fuel Cells
,”
J. Power Sources
,
118
, pp.
162
171
.
12.
Schmitz
,
A.
,
Wagner
,
S.
,
Hahn
,
R.
,
Uzun
,
H.
, and
Hebling
,
C.
, 2004, “
Stability of Planar PEMFC in Printed Circuit Board Technology
,”
J. Power Sources
,
127
, pp.
197
205
.
13.
Schmitz
,
A.
,
Tranitz
,
M.
,
Eccarius
,
S.
,
Weil
,
A.
, and
Hebling
,
C.
, 2006, “
Influence of Cathode Opening Size and Wetting Properties of Diffusion Layers on the Performance of Air-Breathing PEMFCs
,”
J. Power Sources
,
154
, pp.
437
447
.
14.
Jeong
,
S. U.
,
Cho
,
E. A.
,
Kim
,
H.-J.
,
Lin
,
Y.-H.
,
Oh
,
I.-H.
, and
Kim
,
S. H.
, 2006, “
Effects of Cathode Open Area and Relative Humidity on the Performance of Air-Breathing Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
158
, pp.
348
353
.
15.
Cha
,
S. W.
,
O’Hayre
,
R.
,
Saito
,
Y.
, and
Prinz
,
F. B.
, 2004, “
The Scaling Behavior of Flow Patterns: A Model Investigation
,”
J. Power Sources
,
134
, pp.
57
71
.
16.
Nam
,
J. H.
,
Lee
,
K.-Y.
,
Sohn
,
S.
, and
Kim
,
C.-J.
, 2009, “
Multi-Pass Serpentine Flow-Fields to Enhance Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells: Design and Geometrical Characterization
,”
J. Power Sources
,
188
, pp.
14
23
.
17.
Kloess
,
J. P.
,
Wang
,
X.
,
Liu
,
J.
,
Shi
,
Z.
, and
Guessous
,
L.
, 2009, “
Investigation of Bio-Inspired Flow Channel Designs for Bipolar Plates in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
188
, pp.
132
140
.
18.
Williams
,
K. R.
, and
Muller
,
R. S.
, 1996, “
Etch Rates for Micromachining Processing
”,
J. Microelectromech. Syst.
,
5
(
4
), pp.
256
269
.
19.
Williams
,
K. R.
,
Gupta
,
K.
, and
Wasilik
,
M.
, 2003, “
Etch Rates for Micromachining Processing-Part II
,”
J. Microelectromech. Syst.
,
12
(
6
), pp.
761
778
.
You do not currently have access to this content.