Within the following brief is the researched conclusion that there is a lack of fundamental experimental data available to the scientific community detailing the temperature profile through the cathode/electrolyte/anode assembly section of Solid Oxide Fuel Cells (SOFC). Within these electrochemical reaction driving deceives, heat may be generated and diminished by several means. For example, heat is generally considered to be generated locally; as a result of the reactor’s fundamental operation. Furthermore, heat is generally considered to be generated and/or diminished, depending on the reforming method used, when the anode executes hydrocarbon fuel reformation. Not continually developing and/or utilizing novel experimental techniques, often developed for other fields, in order to provide fundamentally elucidating experimental data regarding SOFC operation is counter-intuitive. To date, the high temperature fuel cell field has not fully adopted the potential of thermography in order to study SOFC internal operation and indeed material characterization. This may be caused by the recent rapid development of the technology, which has reduced its cost while increasing its scope. This technical brief aims to highlight missing experimental data and suggest a technology and approach that may be able to address the issue.

References

1.
Lawlor
,
V.
,
Hochenauer
,
C.
,
Griesser
,
S.
,
Zauner
,
G.
,
Buchinger
,
G.
,
Meissner
,
D.
,
Olabi
,
A. G.
,
Klein
,
K.
,
Kuehn
,
S.
,
Cordiner
,
S.
, and
Mariani
,
A.
, 2011, “
The Use of a High Temperature Wind Tunnel for Mt-Sofc Testing—Part II: Use of Computational Fluid Dynamics Software in Order to Study Previous Measurements
,”
J. Fuel Cell Sci. Technol.
,
8
(
6
), p.
061019
.
2.
Lawlor
,
V.
,
Zauner
,
G.
,
Hochenauer
,
C.
,
Mariani
,
A.
,
Griesser
,
S.
,
Carton
,
J. G.
,
Klein
,
K.
,
Kuehn
,
S.
,
Olabi
,
A. G.
,
Cordiner
,
S.
,
Meissner
,
D.
, and
Buchinger
,
G.
, 2010, “
The Use of a High Temperature Wind Tunnel for Mt-Sofc Testing—Part I: Detailed Experimental Temperature Measurement of an Mt-Sofc Using an Avant-Garde High Temperature Wind Tunnel and Various Measurement Techniques
,”
J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061016
.
3.
Pomfret
,
M. B.
,
Steinhurst
,
D. A.
,
Kidwell
,
D. A.
, and
Owrutsky
,
J. C.
, 2009, “
Thermal Imaging of Solid Oxide Fuel Cell Anode Processes
,”
J. Power Sources
,
195
(
1
), pp.
257
262
.
4.
Brett
,
D. J. L.
,
Aguiar
,
P.
,
Clague
,
R.
,
Marquis
,
A. J.
,
Schöttl
,
S.
,
Simpson
,
R.
, and
Brandon
,
N. P.
, 2007, “
Application of Infrared Thermal Imaging to the Study of Pellet Solid Oxide Fuel Cells
,”
J. Power Sources
,
166
(
1
), pp.
112
119
.
5.
Schöttl
,
S.
, and
Brett
,
D. J. L.
, 2006, “
Applications of Thermal Imaging to Solid Oxide Fuel Cell Research
,” NPL Report, DEPC-TH-007.
6.
Ju
,
G.
,
Reifsnider
,
K.
, and
Huang
,
X.
, 2008, “
Infrared Thermography and Thermoelectrical Study of a Solid Oxide Fuel Cell
,”
J. Fuel Cell Sci. Technol.
,
5
(
3
), p.
031006
.
7.
Zitouni
,
B.
,
Moussa
,
H. B.
,
Oulmi
,
K.
,
Saighi
,
S.
, and
Chetehouna
,
K.
, 2009, “
Temperature Field, H2 and H2o Mass Transfer in Sofc Single Cell: Electrode and Electrolyte Thickness Effects
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
5032
5039
.
8.
Fischer
,
K.
, and
Seume
,
J. R.
, 2009, “
Impact of the Temperature Profile on Thermal Stress in a Tubular Solid Oxide Fuel Cell
,”
J. Fuel Cell Sci. Technol.
,
6
(
1
), p.
011017
.
9.
Kanamura
,
K.
,
Yoshioka
,
S.
, and
Takehara
,
Z.-I.
, 1991, “
Temperature Distribution in Tubular Solid Oxide Fuel Cell
,”
Chem. Soc. Jpn.
,
64
(
6
), pp.
1828
1834
.
10.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2008, “
Computational Thermal-Fluid Analysis of a Microtubular Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
55
(
11
), pp.
B1117
B1127
.
11.
Cui
,
D.
, and
Mojie
,
C.
, 2009, “
Numerical Analysis of Thermal and Electrochemical Phenomena for Anode Supported Microtubular Sofc
,”
AIChE J.
,
55
(
3
), pp.
771
782
.
12.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2010, “
Thermal Stresses in an Operating Micro-Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
,
195
(
15
), pp.
4905
4914
.
13.
Cui
,
D.
, and
Cheng
,
M.
, 2009, “
Thermal Stress Modeling of Anode Supported Micro-Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
,
192
(
2
), pp.
400
407
.
14.
Mariani
,
A.
, 2006, “
Development of a SOFC Stack by Fluid Dynamic and Structural Analysis
,”EUA4X#19 Conference MASCOT06, IAC-CNR, Rome, Italy, Oct. 6–7, pp.
1
10
.
15.
Hashimoto
,
S.
,
Nishino
,
H.
,
Liu
,
Y.
,
Asano
,
K.
,
Mori
,
M.
,
Funahashi
,
Y.
, and
Fujishiro
,
Y.
, 2008, “
The Electrochemical Cell Temperature Estimation of Micro-Tubular SOFCS during the Power Generation
,”
J. Power Sources
,
181
(
2
), pp.
244
250
.
16.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2009, “
Effects of Operating Conditions on the Performance of a Micro-Tubular Solid Oxide Fuel Cell (Sofc)
,”
J. Power Sources
,
192
(
2
), pp.
414
422
.
17.
Serincan
,
M. F.
,
Smirnova
,
A.
, and
Sammes
,
N. M.
, 2007, “
Modeling and Analysis of a Micro-Tubular Solid Oxide Fuel Cell Operating at Intermediate Temperatures
,”
ECS Trans.
,
7
(
1
), pp.
1955
1965
.
18.
Fischer
,
K.
, and
Seume
,
J. R.
, 2009, “
Location and Magnitude of Heat Sources in Solid Oxide Fuel Cells
,”
J. Fuel Cell Sci. Technol.
,
6
(
1
), p.
11002
.
19.
Hashimoto
,
S.
,
Liu
,
Y.
,
Asano
,
K.
,
Yoshiba
,
F.
,
Mori
,
M.
,
Funahashi
,
Y.
, and
Fujishiro
,
Y.
, 2011, “
Power Generation Properties of Microtubular Solid Oxide Fuel Cell Bundle under Pressurized Conditions
,”
J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
021010
.
20.
Zitouni
,
B.
,
Andreadis
,
G. M.
,
Hocine
,
B. M.
,
Hafsia
,
A.
,
Djamel
,
H.
, and
Mostefa
,
Z.
, 2010, “
Two-Dimensional Numerical Study of Temperature Field in an Anode Supported Planar Sofc: Effect of the Chemical Reaction
,”
Int. J. Hydrogen Energy
,
36
(
6
), pp.
4228
4235
.
21.
Daun
,
K. J.
,
Beale
,
S. B.
,
Liu
,
F.
, and
Smallwood
,
G. J.
, 2006, “
Radiation Heat Transfer in Planar Sofc Electrolytes
,”
J. Power Sources
,
157
(
1
), pp.
302
310
.
22.
Murthy
,
S.
, and
Fedorov
,
A. G.
, 2003, “
Radiation Heat Transfer Analysis of the Monolith Type Solid Oxide Fuel Cell
,”
J. Power Sources
,
124
(
2
), pp.
453
458
.
23.
Damm
,
D. L.
, and
Fedorov
,
A. G.
, 2005, “
Spectral Radiative Heat Transfer Analysis of the Planar Sofc
,”
J. Fuel Cell Sci. Technol.
,
2
(
4
), pp.
258
262
.
24.
Nakajima
,
H.
,
Konomi
,
T.
, and
Kitahara
,
T.
, 2009, “
Thermal Analysis of a Microtubular Solid Oxide Fuel Cell Using Electrochemical Impedance Spectroscopy
,”
ECS Trans.
,
25
(
2
), pp.
359
368
.
25.
Pomfret
,
M. B.
,
Owrutsky
,
J. C.
, and
Walker
,
R. A.
, 2010, “
In Situ Optical Studies of Solid-Oxide Fuel Cells
,”
Annu. Rev. Anal. Chem.
,
3
(
1
), pp.
151
174
.
26.
Daino
,
M. M.
,
Lu
,
Z.
,
Lamanna
,
J.
,
Owejan
,
J.
,
Trabold
,
T.
, and
Kandlikar
,
S. G.
, 2010, “
Through-Plane Water Transport Visualization in an Operating Pem Fuel Cell by Visible and Infrared Imaging
,”
ECS Trans.
,
33
(
1
), pp.
1423
1433
.
27.
Zauner
,
G.
,
Heim
,
D.
,
Niel
,
K.
,
Hendorfer
,
G.
, and
Stoeri
,
H.
, 2004, “
Ccd Cameras as Thermal Imaging Devices in Heat Treatment Processes
,”
Proceedings of the SPIPE 5303
, San Jose, CA, USA, pp.
81
89
.
28.
Saunders
,
P.
,
Bonsey
,
S.
, and
White
,
D.
, 1999, “
Determination of Reformer-Tube Temperature by Means of a Ccd Camera
,”
High Temp. - High Press.
,
31
(
1
), pp.
83
90
.
29.
Dhokkar
,
S.
,
Serio
,
B.
,
Lagonotte
,
P.
, and
Meyrueis
,
P.
, 2007, “
Power Transistor near-Infrared Microthermography Using an Intensified Ccd Camera and Frame Integration
,”
Meas. Sci. Technol.
,
18
(
8
), pp.
2696
2703
.
30.
Huang
,
Q.-A.
,
Hui
,
R.
,
Wang
,
B.
, and
Zhang
,
J.
, 2007, “
A Review of Ac Impedance Modeling and Validation in Sofc Diagnosis
,”
Electrochim. Acta
,
52
(
28
), pp.
8144
8164
.
31.
Wyss
,
P.
,
Hack
,
E.
, and
Holtappels
,
P.
, 2009, “
Application of Non-Destructive Testing to Analyse Sofc Cells and Stacks
,”
Fuel Cells
,
9
(
6
), pp.
907
910
.
32.
Eigenbrodt
,
B. C.
,
Pomfret
,
M. B.
,
Steinhurst
,
D. A.
,
Owrutsky
,
J. C.
, and
Walker
,
R. A.
, 2011, “
Direct, in Situ Optical Studies of Niâ∧’Ysz Anodes in Solid Oxide Fuel Cells Operating with Methanol and Methane
,”
J. Phys. Chem. C
,
115
(
6
), pp.
2895
2903
.
33.
Zauner
,
G.
,
Darilion
,
G.
,
Heim
,
D.
,
Hendorfer
,
G.
, and
Mueller
,
T.
, 2005, “
Ccd Based Emissivity Measurements for Surface Characterization in Heat Treatment Processes
,”
Proceedings of the SPIE 5856
, Munich, Germany, pp.
1028
1035
.
34.
Mayrhofer
,
F.
,
Zauner
,
G.
,
Hendorfer
,
G.
,
Darilion
,
G.
, and
Müller
,
T.
, 2008, “
Optical Characterization of Thin Layers Grown on Metal Components
,”
Proc. SPIE
7003,pp. 70030R-70030R-11.
35.
Finnerty
,
C.
,
Cunningham
,
R.
, and
Ormerod
,
R.
, 2000, “
Development of a Novel Test System for in Situ Catalytic, Electrocatalytic and Electrochemical Studies of Internal Fuel Reforming in Solid Oxide Fuel Cells
,”
Catal. Lett.
,
66
(
4
), pp.
221
226
.
36.
Cimenti
,
M.
, and
Hill
,
J.
, 2009, “
Direct Utilization of Liquid Fuels in Sofc for Portable Applications: Challenges for the Selection of Alternative Anodes
,”
Energies
,
2
(
2
), pp.
377
410
.
You do not currently have access to this content.