A bioelectrochemical fuel was fabricated with pretreated and fermented rice husks. The fuel was characterized with variation of process variables by determination of chemical oxygen demand (COD) which is a measure of the oxygen equivalent of electrochemically oxidizable organic fuel to produce electrical energy. The electrodes of the cell were made with nanoporous pure Al coated with platinum, platinum-ruthenium, and platinum-ruthenium-carbon. Anodization parameters were optimized by studying E-I characteristics in sulfuric and oxalic acids with variation of concentration and temperature. Pore size on the order of 30–50 nm was obtained by a two stage anodization. The performance of the cell was evaluated by determining open circuit potential, E-I characteristics, polarization studies, and cyclic voltammetry. A steady onload potential of 600–800 mV was obtained with current density on the order of 15–25 mA/cm2. High power density of 10–15 mW/cm2 has been obtained with electrode materials coated with Pt + Ru or Pt + Ru + C. The performance of coating on nanoporous structure was greatly reflected in the polarization studies, which showed a huge reduction of polarization resistance and increase of exchange current density by many times, the effect being more for anode with anodic solution, fermented rice husk, than with cathode with phosphate buffer cathodic solution. The surface morphology examined by SEM, showed nanodeposits of Pt, Pt-Ru, and the presence of carbon like structure. XRD peaks clearly reveal presence of Pt, Pt-Ru, and carbon.

References

References
1.
Paul
,
S.
, and
Jana
,
A.
, 2007, “
Study on Bioelectrochemical Fuel Cell With Algae
,”
J. Inst. Eng. Interdisciplinary Div.
,
88
, pp.
27
30
.
2.
Paul
,
S.
, and
Mondal
,
P.
, 2006, “
Pyrolysis of Forest Residue for Production of Bio Fuel
,”
Int. Energy J.
,
7
, pp.
221
225
.
3.
Lee
,
J.
, 1997, “
Biological Conversion of Lignocelluloses Biomass to Ethanol
,”
J. Biotechnol.
,
56
, pp.
1
24
.
4.
Iranmahbooba
,
J.
,
Nadima
,
F.
, and
Monemib
,
S.
, 2002, “
Optimizing Acid-Hydrolysis: A Critical Step for Production of Ethanol From Mixed Wood Chips
,”
Biomass Bioenergy
,
22
, pp.
401
404
.
5.
Schell
,
D. J.
,
Riley
,
C. J.
,
Dowe
,
N.
,
Farmer
,
J.
,
Ibsen
,
K. N.
,
Ruth
,
M. F.
,
Toon
,
S. T.
, and
Lumpkin
,
R. E.
, 2004, “
A Bioethanol Process Development Unit: Initial Operating Experiences and Results With a Corn.Ber Feedstock
,”
Bioresour. Technol.
,
91
, pp.
179
188
.
6.
Ehrman
,
T.
, 1996, “
Determination of Acid-Soluble Lignin in Biomass
,” National Renewable Energy Laboratory, Technical Report NREL-LAP-004, Golden, CO.
7.
Harris
,
J. F.
, 1975, “
Acid Hydrolysis and Dehydration Reactions for Utilling Plant Carbohydrates
,“
Appl. Polym. Symp.
,
28
, pp.
131
144
.
8.
Watanabe
,
T.
,
Shida
,
M.
,
Furuyama
,
Y.
,
Tsukamoto
,
K.
,
Nakajima
,
T.
, and
Matsuda
,
K.
, 1983, “
Structure of Arabinoxylan of Rice Hull
,”
Carbohydrate Res.
,
123
, pp.
83
95
.
9.
Watanabe
,
T.
,
Shida
,
M.
,
Murayama
,
T.
,
Furuyama
,
Y.
,
Nakajima
,
T.
, and
Matsuda
,
K.
, 1984, “
Xyloglucans in Cell Walls of Rice Hull
,”
Carbohydrate Res.
,
129
, pp.
229
242
.
10.
Saha
,
B. C.
, and
Cotta
,
M. A.
, 2007, “
Enzymatic Saccharification and Fermentation of Alkaline Peroxide Pretreated Rice Hulls to Ethanol
,”
Enzyme Microbial Technol.
,
4
, pp.
1528
1532
.
11.
Chang
,
V. S.
,
Burr
,
B.
, and
Holtzapple
,
M. T.
, 1997, “
Lime Pretreatment of Switchgrass
,”
Appl. Biochem. Biotechnol.
,
63
, pp.
3
19
.
12.
Chang
,
V. S.
,
Nagwani
,
M.
,
Kim
,
C.-H.
, and
Holtzapple
,
M. T.
, 1998, “
Lime Pretreatment of Crop Residues: Bagasse and Wheat Straw
,”
Appl. Biochem. Biotechnol.
,
74
, pp.
135
159
.
13.
Karr
,
W. E.
, and
Holtzapple
,
M. T.
, 2000, “
Using Lime Pretreatment to Facilitate the Enzyme Hydrolysis of Corn Stover
,”
Biomass Bioenergy
,
18
, pp.
189
199
.
14.
Kim
,
S.
, and
Holtzapple
,
M. T.
, 2005, “
Lime Pretreatment and Enzymatic Hydrolysis of Corn Stover
,”
Bioresour. Technol.
,
96
, pp.
1994
2006
.
15.
Paul
,
S.
, and
Mondal
,
P.
, 2008, “
Fabrication and Characterization of Bioelectrochemical Fuel Cell With Pyrolysed Produced Bio Oil and Hydrolysed Biomass By Fermentation
,”
J. Inst. Eng.
, 2009 Interdisciplinary,
90
, pp.
40
45
.
16.
Basnayake
,
R.
,
Li
,
Z.
,
Lakshmi
,
S.
,
Zhou
,
W.
,
Smotkin
,
E. S.
,
Casadonte
,
D. J.
, and
Korzeniewski
,
C.
, 2006, “
PtRu Nanoparticle Electrocatalyst with Bulk Alloy Properties Prepared through a Sonochemical Method
,”
J. Am. Chem. Soc.
,
22
(
25
), pp.
10446
10450
.
17.
Bock
,
C.
,
Paquet
C. M.
,
Couillard
,
G.
,
Botton
,
A.
, and
MacDougall
,
B. R.
, 2004, “
Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism
,”
J. Am. Chem. Soc.
,
126
, pp.
8028
8037
.
18.
Shan
,
C.
,
Tsai
,
D. S.
,
Huang
,
Y.-S.
,
Jian
,
S. H.
, and
Cheng
,
C. L.
, 2007, “
Pt-Ir-IrO2NT Thin-Wall Electrocatalysts Derived from IrO2 Nanotubes and their Catalytic Activities in Methanol Oxidation
,”
Chem. Mater.
,
19
, pp.
424
431
.
19.
Luo
,
J.
,
Njoki
,
P.
,
Lin
,
Y.
,
Wang
,
L.
,
Mott
,
D.
, and
Zhong
,
C.
, 2006, “
Activity-Composition Correlation of AuPt Alloy Nanoparticle Catalysts in Electrocatalytic Reduction of Oxygen
,”
J. Electrochem. Commun.
,
8
, pp.
581
587
.
20.
Casado-Rivera
,
E.
,
Volpe
,
D. J.
,
Alden
,
L.
,
Downie
,
C.
,
V’azquez-Alvarez
,
T.
,
Angelo
,
A. C. D.
,
DiSalvo
,
F. J.
, and
Abruna
,
H. D.
, 2004, “
Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications
,”
J. Am. Chem. Soc.
,
126
, pp.
4043
4049
.
21.
Solla-Gullón
,
J.
,
Vidal-Iglesias
,
F. J.
,
Montiel
,
V.
, and
Aldaz
,
A.
, 2004, “
Electrochemical Characterization of Platinum–ruthenium Nanoparticles Prepared by Water-in-Oil Microemulsion
,”
Electrochim Acta
,
49
, pp.
5079
5088
.
22.
Liu
,
Z. L.
,
Ling
,
X. Y.
,
Su
,
X. D.
, and
Lee
,
J. Y.
, 2004, “
Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell
,”
J. Phys. Chem. B
,
108
, pp.
8234
8240
.
23.
Deivaraj
,
T. C.
, and
Lee
,
J. Y.
, 2005, “
Preparation of Carbon-Supported PtRu Nanoparticles for Direct Methanol Fuel Cell Applications – A Comparative Study
,”
J. Power Sources
,
142
, pp.
43
49
.
24.
Wu
,
T. -M
,
Lin
,
Y. -W
, and
Liao
,
C.-S.
, 2005, “
Preparation and Characterization of Polyaniline/Multi-walled Carbon Nanotube Composites
,”
Carbon
,
43
, pp.
734
740
.
25.
Li
,
W. Z.
,
Liang
,
C. H.
,
Zhou
,
W. J.
,
Qiu
,
J. S.
,
Zhou
,
Z. H.
,
Sun
,
G. Q.
, and
Xin
,
Q
, 2003, “
Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells
,”
J. Phys. Chem. B
,
107
, pp.
6292
6299
.
26.
Liu
,
H.
,
Song
,
C.
,
Zhang
,
L.
,
Zhang
,
J.
,
Wang
,
H.
, and
Wilkinson
,
D. P.
, 2006, “
A Review of Anode Catalysis in the Direct Methanol Fuel Cell
,”
J. Power Sources
,
155
, pp.
95
110
.
27.
Lux
,
K. W.
, and
Cairns
,
E. J.
, 2006, “
Lanthanide–Platinum Intermetallic Compounds as Anode Electrocatalysts for Direct Ethanol PEM Fuel Cells
,”
J. Electrochem. Soc.
,
153
, pp.
A1132
A1138.
28.
Bocris
,
J. O. M.
, and
Reddy
,
A. K.
, 2004,
Modern Electrochemistry
, Vol.
1
,
McGraw-Hill
,
New York
, p.
1812
.
You do not currently have access to this content.