The aim of this project was to study whether the oxidation resistance of cells is affected while working under high fuel utilization. A previous study measured the weak oxidation resistance for very porous samples (measured porosity ∼ 70%) in H2 with high H2O content (over 50%) in the interval from 600 to 800 °C. Thus, additional tests were carried out with cells. Crofer22APU-supported solid oxide fuel cells (SOFCs) were produced by scalable cost competitive routes. One of the highly porous cells (calculated porosity 45%) was run under high fuel utilization conditions (calculated fuel utilization 56%), and a further two in H2-50%H2O. Another cell, with low porosity (calculated porosity 20%), was kept working in the same H2-50%H2O atmosphere for many hours. Durability tests with cells of different porosities confirmed that this is the main variable concerning degradation issues while working under high fuel utilization.

References

References
1.
Villarreal
,
I.
,
Jacobson
,
C.
,
Leming
,
A.
,
Matus
,
Y.
,
Visco
,
S.
, and
De Jonghe
,
L.
, 2003, “
Metal-Supported Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
,
6
, pp.
A178
A179S
.
2.
Brandner
,
M.
, 2006, “
Herstellung einer Metall/Keramik Verbundstruktur fuer Hochtemperaturbrennstoffzellen in mobilen Anwendungen
,” PhD thesis, JUEL-4238, Research Center Juelich, Juelich, Germany.
3.
Antepara
,
I.
,
Rivas
,
M.
,
Villarreal
,
I.
,
Burgos
,
N.
, and
Castro
,
F.
, 2010,
ASME J. Fuel Cell Sci. Technol.
,
7
, p.
061010
.
4.
Takenoiri
,
S.
,
Kadokawa
,
N.
, and
Koseki
,
K.
, 2000, “
Development of Metallic Substrate Supported Planar Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma Spraying
,”
J. Thermal Spray Technol.
,
9
, pp.
360
363
.
5.
Oishi
,
N.
, and
Yoo
,
Y.
, 2009,
SOFC-XI
, pp.
739
744
.
6.
Hathiramani
,
D.
,
Vaßen
,
R.
,
Mertens
,
J.
,
Sebold
,
D.
,
Haanappel
,
V. A. C.
, and
Stöver
,
D.
, 2006, “
Degradation Mechanism of Metal Supported Atmospheric Plasma Sprayed Solid Oxide Fuel Cells
,”
Ceram. Eng. Sci. Proc.
,
27
(4)
, pp.
55
65
.
7.
Schiller
,
G.
,
Ansar
,
A.
,
Lang
,
M.
, and
Patz
,
O.
, 2009, “
High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells (SOEC)
,”
J. Appl. Electrochem.
,
39
, pp.
293
301
.
8.
Rodriguez-Martinez
,
L. M.
,
Otaegi
,
L.
,
Rivas
,
M.
,
Gomez
,
N.
,
Alvarez
,
M.
,
Zabala
,
A.
,
Arizmendiarrieta
,
N.
,
Antepara
,
I.
,
Villarreal
,
I.
, and
Laresgoiti
,
A.
, 2009, “
Degradation Studies on Tubular Metal Supported SOFC
,”
ECS Meeting Abstracts
,
902
, pp.
1578
1578
.
9.
Cooper
,
K. R.
, and
Smith
,
M.
, 2006,
J. Power Sources
,
160
, pp.
1088
1095
.
10.
Fluent
, 2008,
Fluent User’s Manual
,
Fluent Inc.
,
Lebanon, NH.
11.
Campana
,
R.
,
Larrea
,
A.
,
Merino
,
R. I.
,
Villareal
,
I.
, and
Orera
,
V. M.
, 2008,
Boletin Sociedad Espanola Ceramica Vidrio
,
47
(
4
), pp.
189
195
.
12.
Carter
,
J. D.
,
Cruse
,
T. A.
,
Ralph
,
J. M.
, and
Myer
,
D. J.
, 2003, “
Powder Metallurgy and Solid Oxide Fuel Cells
,”
International Conference On Powder Metallurgy & Particulate Materials
, Las Vegas.
13.
Ansar
,
A.
,
Ilhan
,
Z.
, and
Arnold
,
J.
, 2009, “
Plasma Sprayed Metal Supported SOFCs Having Enhanced Performance and Durability
,”
Proceedings of the International Thermal Spray Conference
, Las Vegas.
14.
German
,
R. M.
, 1994,
Powder Metallurgy Science
,
2nd ed.
,
MPIF
,
Princeton, NJ
.
15.
Hoffman
,
G.
, and
Kapoor
,
D.
, 1976, “
Properties of Stainless Steel P/M Filters
,”
Int. J. Powder Metall. Powder Technol.
,
12
(
4
), pp.
281
296
.
16.
Ertl
,
S. T.
, 2006, “
Untersuchungen zur oxidationsbedingten Lebensdauer von Chromstählen für die Anwendung in der Hochtemperaturbrennstoffzelle (SOFC)
,” Ph.D. Thesis, RWTH Aachen, Fakultät für Maschinenwesen.
You do not currently have access to this content.