The crystal structure, phase relationship and sintering characteristics of (Sr0.7La0.3)1−xTiO3+δ perovskites (0 ≤ x ≤ 0.12) have been studied using the Pechini method. High-temperature neutron diffraction analysis showed that (Sr0.7La0.3)TiO3+δ has an orthorhombic structure at room temperature and a cubic structure at 450 °C. (Sr0.7La0.3)0.88TiO3+δ showed a single perovskite phase and other samples with an A-site deficiency of 0 ≤ x ≤ 0.08 included secondary Ruddlesden-Popper phases. Sintering characteristics improved as the A-site deficiency increased and it was found that during sintering, (Sr0.7La0.3)0.88TiO3+δ expanded anomalously between 1400 °C and 1500 °C and for holding times between 0 h and 10 h at 1400 °C and 1500 °C. Additionally, observation of the samples by scanning electron microscopy showed that this expansion was caused by pore formation within the samples. All the samples showed a weight decrease at temperatures ≥1000 °C and the temperature at which oxygen release began rose as the A-site deficiency increased. The release of oxygen is likely to be related to pore formation.

References

References
1.
Chan
,
N.-H.
,
Sharma
,
R. K.
, and
Smyth
,
D. M.
, 1981, “
Nonstoichiomery in SrTiO3
,”
J. Electrochem. Soc.
,
128
(
8
), pp.
1762
1769
.
2.
Moos
,
R.
, and
Härdtl
,
K. H.
, 1996, “
Electronic Transport Properties of Sr1−xLaxTiO3 Ceramics
,”
J. Appl. Phys.
,
80
(
1
), pp.
393
400
.
3.
Flandermeyer
,
B. F.
,
Aganwal
,
A. K.
, and
Anderson
,
H. U.
, 1984, “
Oxygen-Reduction Behavior of La-Doped SrTiO3
,”
J. Mater. Sci.
,
19
, pp.
2593
2598
.
4.
Balachandran
,
U.
, and
Eror
,
N. G.
, 1982, “
Electrical Conductivity in Lanthanum-Doped Strontium Titanate
,”
J. Electrochem. Soc.
,
129
(
5
), pp.
1021
1026
.
5.
Marina
,
O. A.
,
Canfield.
N. L.
, and
Stevenson.
J. W.
, 2002, “
Thermal, Electrical and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate
,”
Solid State Ionics
,
149
, pp.
21
28
.
6.
Eror
,
N. G.
, and
Balachandran
,
U.
, 1981, “
Self-Compensation in Lanthanum-Doped Strontium Titanate
,”
J. Solid State Chem.
,
40
, pp.
85
91
.
7.
Wang
,
Z.
,
Mori
,
M.
, and
Itoh
,
T.
, 2010, “
Thermal Expansion Properties of Sr1−xLaxTiO3 (0 ≤ x ≤ 0.3) Perovskites in Oxidizing and Reducing Atmospheres
,”
J. Electrochem. Soc.
,
157
(
12
), pp.
B1783
B1789
.
8.
Tsukuda
,
H.
,
Okuma
,
S.
, and
Tomida
,
K.
, 2009, “
Influence of La Substitute on Sintering Behavior, Electronic Properties and thermal Expansion of Sr1–1.5xLaxTiO3
,”
J. Jpn. Soc. Powder Powder Metallurgy
,
56
(
2
), pp.
65
70
.
9.
Tomida
,
K.
,
Yamashita
,
A.
,
Tukuda
,
H.
,
Kabata
,
T.
,
Ikeda
,
K.
,
Hisatome
,
N.
, and
Yamazaki
,
Y.
, 2009, “
Optimization of Segmented-in-series Tubular SOFCs with an (La,Sr)CoO3 System Cathode and the Generation Characteristics under Pressurization
,”
Electrochemistry
,
77
(
12
), pp.
1018
1027
.
10.
Hosoi
,
K.
, and
Nakabaru
,
M.
, 2009, “
Status of National Project for SOFC Development in Japan
,”
ECS Trans.
,
25
(
2
) p.
11
20
.
11.
Mori
,
M.
, and
Wang
,
Z.
, 2010, “
Pore Formation during Sintering Process of (Sr0.9La0.1)1−xTi1−yO3+δ Perovskites (x, y = 0, 0.04) Synthesized by the Citric Acid Method
,”
Electrochemisrty
,
78
(
11
), pp.
896
898
.
12.
Wang
,
Z.
, and
Mori
,
M.
, 2011, “
Sintering Characteristics and Electrical Conductivity of (Sr1−xLax)TiO3 Synthesized by the Citric Acid Method
,”
J. Fuel Cell Sci. Tech.
,
8
(
5
),
051018
–1–
5
.
13.
Navas
,
C.
, and
Loye
,
H.-C.
, 1997, “
Conductivity Studies on Oxygen Deficient Ruddlesden-Popper Phase
,”
Solid State Ionics
,
93
, pp.
171
176
.
14.
Mori
,
M.
,
Wang
,
Z.
,
Itoh
,
T.
,
Yabui
,
S.
,
Murai
,
K.
, and
Moriga
,
T.
, 2011, “
A-site and B-site Non-Stoichiometry and Sintering Characteristics of (Sr1−xLax)1−yTi1-zO3 Perovskites
,”
J. Fuel Cell Sci. Technol.
,
8
,
051014
1
.
15.
Izumi
,
F.
, and
Momma
,
K.
, 2007, “
Three-Dimensional Visualization in Powder Diffraction
,”
Solid State Phenom.
,
130
, pp.
15
20
.
16.
Izumi
,
F.
, and
Ikeda
,
T.
, 2000, “
A Rietveld-Analysis Program RIETAN-98 and its Applications to Zeolites
,”
Mater. Sci. Forum
,
321–324
, pp.
198
205
.
17.
Izumi
,
F.
, and
Ikeda
,
T.
, 2001, “
MEM-Based Structure-Refinement System REMEDY and its Applications
,”
Mater. Sci. Forum
,
378–381
, pp.
59
64
.
18.
Izumi
,
F.
, 1995, “
Rietveld Analysis Programs Rietan and Premos and Special Applications
,”
The Rietveld Method
,
R. A.
Young
, ed.,
Oxford University Press
,
New York
, Chap. 12.
19.
Kresse
,
G.
, and
Furthmüller
,
J.
, 1996, “
Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set
,”
Phys. Rev. B.
,
54
,
11169
.
20.
Blöchl
,
P. E.
, 1994, “
Projector Augmented-Wave Method
,”
Phys. Rev. B.
,
50
, pp.
17953
17979
.
21.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
, 1996, “
Generalized Gradient Approximation Made Simple
,”
Phys Rev Lett.
,
77
, pp.
3865
3868
.
22.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
, 1997, “
Generalized Gradient Approximation Made Simple
,”
Phys Rev Lett.
,
78
, pp.
1396
1396
.
23.
Tanaka
,
T.
,
Matsunaga
,
K.
,
Ikuhara
,
Y.
, and
Yamamoto
,
T.
, 2003, “
First-Principles Study on Structures and Energetics of Intrinsic Vacancies in SrTiO3
,”
Phys. Rev. B
,
68
,
205213
.
24.
Hashimoto
,
S.
,
Kindermann
,
L.
,
Larsen
,
P. H.
,
Poulsen
,
F. W.
, and
Mogensen
,
M.
, 2006, “
Conductivity and Expansion at High Temperature in Sr0.7La0.3TiO3-α Prepared Under Reducing Atmosphere
,”
J. Electroceram.
,
16
, pp.
103
107
.
25.
Howard
,
C. J.
,
Lumpkin
,
G. R.
,
Smith
,
R. I.
, and
Zhang
,
Z.
, 2004, “
Crystal Structures and Phase Transition in the System SrTiO3–La2/3TiO3
,”
J. Solid State Chem.
,
177
, pp.
2726
2732
.
26.
Mori
,
M.
,
Hiei
,
Y.
,
Tompsett
,
G. A.
, and
Sammes
,
N. M.
, 2000, “
Thermal Expansion Behaviors and Mechanisms for Ca-, or Sr-Doped Lanthanum Manganite Perovskites Under Oxidizing Atmospheres
,”
J. Electrochem. Soc.
,
147
(
4
), pp.
1295
1302
.
27.
Mori
,
M.
, 2002, “
Irreversible Expansion Behavior of Mn3O4+δ Spinel and Shrinkage Behavior of La0.6Sr0.4MnO3 Composites with The Spinel during Thermal Cycling in O2 Atmosphere
,”
J. Electrochem. Soc.
,
149
(
8
), pp.
A995
1000
.
28.
Mori
,
M.
, 2002, “
Shrinkage Behaviors of La1−xMnO3+δ Perovskites by Phase Change during Thermal Cycling
,”
Electrochemistry
,
70
(
8
), pp.
602
608
.
29.
Mori
,
M.
,
Wang
,
Z.
, and
Itoh
,
T.
, 2011, “
Pore Formation during Sintering of Sr0.9La0.1)1−xTiO3+δ Pervoskites (x = 0, 0.04) Synthesized by the Pechini Method
,”
Electrochemistry
,
79
(8)
, pp.
688
696
.
30.
Shannon
,
R. D.
, and
Prewitt
,
C. T.
, 1969, “
Effective Ionic Radii in Oxides and Fluorides
,”
Acta Cryst.
,
B25
, pp.
925
946
.
31.
Yasuda
,
I.
, and
Hishinuma
,
M.
, 2000, “
Lattice Expansion of Acceptor-Doped Lathanum Chromites under High-temperature Reducing Atmospheres
,”
Electrochemistry
,
68
(
6
), pp.
526
530
.
32.
Yun
,
J. N.
,
Zhang
,
Z. Y.
,
Yan
,
J. F.
, and
Zhao
,
W.
, 2010, “
First-Principles Study of Structural Stability and Electronic Structure of La-doped Sr1.9375La0.0625TiO3.968 75
,”
J. Appl. Phys.
,
107
,
103711
.
33.
Tokuda
,
A.
,
Kobayashi
,
S.
,
Ohnishi
,
T.
,
Mizoguchi
,
T.
,
Shibata
,
N.
,
Ikuhara
,
Y.
, and
Yamamoto
,
T.
, 2011, “
Strontium Vacancy Clustering in Ti-Excess SrTiO3 Thin Film
,”
Appl. Phys. Lett.
,
99
,
033110
.
34.
Scafer
,
W.
, and
Schmidberger
,
R.
, 1987, “
Ca and Sr Dope LaCrO3: Preparation, Properties, and High-Temperature Applications
,”
High Tech Ceramics
,
P.
Vincenzini
, ed.,
Elesevier Science Publisher
,
Amsterdam
, pp.
1737
1742
.
35.
Mori
,
M.
,
Yamamoto
,
T.
,
Itoh
,
Hi.
, and
Watanabe
,
T.
, 1997, “
Compatibility of Alkaline Earth Metal (Mg, Ca, Sr) Doped Lanthanum Chromites as Separators in Planar-type High-Temperature Solid Oxide Fuel Cells
,”
J. Mater. Sci.
,
32
, pp.
2423
2431
.
This content is only available via PDF.
You do not currently have access to this content.