The paper describes a mathematical analysis of multi-component diffusion with chemical reaction in the porous materials of high-temperature solid oxide fuel cells. The objectives are to clarify the underlying physics, to investigate different modeling approaches and to establish expressions for the cell voltage loss. The description proceeds from the simplest non-reactive binary diffusion process, through a multi-component analysis with non-reactive diluent gases present, to diffusion in the presence of the water-gas shift chemical reaction. Using a single average diffusion coefficient, an analytical solution can be found, not only for the limiting cases of frozen and equilibrium water-gas shift chemistry but also for the general non-equilibrium situation. A Damköhler number is identified and it is shown that shift equilibrium is not necessarily preserved in the anode flow. The non-equilibrium analysis also reveals unusual behavior whereby the molar fluxes become discontinuous in the equilibrium limit while the mole fractions and cell voltage loss approach the limit continuously. A physically more realistic model based on two diffusion coefficients provides a more detailed description for frozen and equilibrium chemistry but does not yield an explicit non-equilibrium solution. In all, the analysis provides fundamental insight and quantitative predictions for many of the flow phenomena occurring in the porous materials of SOFCs.

References

1.
Agnew
,
G.
,
Bozzolo
,
M.
, and
Moritz
,
R. R.
, 2005, “
The Design and Integration of the Rolls-Royce Fuel Cell Systems 1 MW SOFC
,” ASME Turbo Expo, Reno, Nevada, USA, 2005, Paper No. GT2005-69122.
2.
Achenbach
,
E.
, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
49
, pp.
333
348
.
3.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 1998, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT). Part A: Cell Model and Cycle Thermodynamic Analysis
,” ASME Gas Turbine and Aero-Engine Congress, Stockholm, Sweden, 1998, Paper No. 98-GT-577.
4.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2006, “
Diffusion and Chemical Reaction in the Porous Structures of Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
3
, pp.
312
321
.
5.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2008, “
A Detailed Three-Dimensional Simulation of an IP-SOFC Fuel Cell Stack
,”
ASME J. Fuel Cell Sci.Technol.
,
5
, p.
011006
.
6.
Joshi
,
A. S.
,
Grew
,
K. N.
,
Izzo
,
J. R.
, Jr.
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
, 2010, “
Lattice Boltzmann Modelling of Three-Dimensional, Multi-Component Mass Diffusion in a Solid Oxide Fuel Cell Anode
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, p.
011006
.
7.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
, Chap. 18.
8.
Todd
,
B.
, and
Young
,
J. B.
, 2002, “
Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling
,”
J. Power Sources
,
110
, pp.
186
200
.
9.
Epstein
,
N.
, 1989, “
On Tortuosity and the Tortuosity Factor in Flow and Diffusion through Porous Media
,”
Chem. Eng. Sci.
,
44
, pp.
777
779
.
10.
Young
,
J. B.
, and
Todd
,
B.
, 2005, “
Modelling of Multi-Component Gas Flows in Capillaries and Porous Solids
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5338
5353
.
11.
Steele
,
B. C. H.
, 2000, “
Materials for IT-SOFC Stacks. 35 years R & D: The Inevitability Of Gradualness?
,”
Solid State Ionics
,
134
, pp.
3
20
.
12.
Guan
,
Y.
,
Li
,
W.
,
Gong
,
Y.
,
Liu
,
G.
,
Gelb
,
J.
,
Zhang
,
X.
,
Xiong
,
Y.
,
Tian
,
Y.
, and
Wang
,
H.
, 2010, “
The Study of the Reconstructed Three-Dimensional Structure of a Solid-Oxide Fuel-Cell Cathode by X-Ray Nanotomography
,”
J. Synchrotron Radiat.
,
17
, pp.
782
785
.
13.
Bharajwad
,
A.
,
Archer
,
D. H.
, and
Rubin
,
E. S.
, 2005, “
Modelling of the Performance of a Tubular Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
2
, pp.
38
44
.
14.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
, 2nd ed.,
Wiley
,
New York
, pp.
35
38
.
15.
Kramers
,
H. A.
, and
Kistemaker
,
J.
, 1943, “
On the Slip of a Diffusing Gas Mixture Along a Wall
,”
Physica
,
10
, pp.
699
713
.
16.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
, pp.
130
140
.
17.
Smith
,
B. J. R.
,
Muruganandam
,
L.
, and
Shantha
,
M. S.
, 2010, “
A Review of the Water Gas Shift Reaction Kinetics
,”
Int. J. Chem. Reactor Eng.
,
8
, Review R4, pp.
1
32
.
18.
Graven
,
W. M.
, and
Long
,
F. J.
, 1954, “
Kinetics and Mechanisms of the Two Opposing Reactions of the Equilibrium CO + H2O = CO2 + H2
,”
J. Am. Chem. Soc.
,
76
, pp.
2602
2607
.
19.
Bustamante
,
F.
,
Enick
,
R. M.
,
Rothenburger
,
K. S.
,
Howard
,
B. H.
,
Cugini
,
A. V.
,
Killmeyer
,
R. P.
,
Ciocci
,
M. V.
,
Morreale
,
B. D.
,
Chattopadhyay
,
S.
, and
Shi
,
S.
, 2004, “
High Temperature Kinetics of the Homogeneous Reverse Water-Gas Shift Reaction
,”
AIChE J.
,
50
, pp.
1028
1041
.
20.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
,
87
, pp.
57
63
.
You do not currently have access to this content.