The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two-dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.

References

References
1.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
, pp.
4727
4766
.
2.
Park
,
J.
, and
Li
,
X.
, 2008, “
Multi-Phase Micro-Scale Flow Simulation in the Electrodes of a PEM Fuel Cell by Lattice Boltzmann Method
,”
J. Power Sources
,
178
, pp.
248
257
.
3.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
, 2006, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
,
162
(
1
), pp.
228
238
.
4.
Keller
,
A. A.
,
Blunt
,
M. J.
, and
Roberts
,
P. V.
, 1997, “
Micromodel Observation of the Role of Oil Layers in Three-Phase Flow
,”
Transp. Porous Media
,
26
, pp.
277
297
.
5.
Sirivithayapakorn
,
S.
, and
Keller
,
A.
, 2003, “
Transport of Colloids in Saturated Porous Media: A Pore-Scale Observation of the Size Exclusion Effect and Colloid Acceleration
,”
Water Resour. Res.
,
39
(
4
), p.
1109
.
6.
Sirivithayapakorn
,
S.
, and
Keller
,
A.
, 2003, “
Transport of Colloids in Unsaturated Porous Media: A Pore-Scale Observation of Processes During the Dissolution of Air-Water Interface
,”
Water Resour. Res.
,
39
(
12
), p.
1346
.
7.
Thompson
,
K. E.
, 2002, “
Pore-Scale Modeling of Fluid Transport in Disordered Fibrous Materials
,”
AIChE J.
,
48
(
7
), pp.
1369
1389
.
8.
Kitasaka
,
T.
,
Mori
,
K.
,
Hasegawa
,
J.
, and
Toriwaki
,
J.
, 2002, “
A Method for Extraction of Bronchus Regions from 3D Chest X-Ray CT Image by Analyzing Structure Features of the Bronchus
,”
Forma
,
17
(4)
, pp.
321
338
.
9.
Hughes
,
R. G.
, and
Blunt
,
M. J.
, 2001, “
Network Modeling of Multiphysics Flow in Fractures
,”
Adv. Water Resour.
,
24
, pp.
409
421
.
10.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4595
4611
.
11.
He
,
G.
,
Zhao
,
Z.
,
Ming
,
P.
,
Abuliti
,
A.
, and
Yin
,
C.
, 2007, “
A Fractal Model for Predicting Permeability and Liquid Water Relative Permeability in the Gas Diffusion Layer (GDL) of PEMFCs
,”
J. Power Sources
,
163
, pp.
846
852
.
12.
Gostick
,
J. T.
,
Ioannidis
,
M. A.
,
Fowler
,
M. W.
, and.
Pritzker
,
M. D.
, 2007, “
Pore Network Modeling of Fibrous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
173
, pp.
277
290
.
13.
Wang
,
G.
,
Mukherjee
,
P. P.
, and
Wang
,
C. Y.
, 2006, “
Direct Numerical Simulation (DNS) Modeling of PEFC Electrodes, Part I Regular Microstructure
,”
Electrochim. Acta
,
51
, pp.
3139
3150
.
14.
Tabe
,
Y.
,
Lee
,
Y.
,
Chikahisa
,
T.
, and
Kozakai
,
M.
, 2009, “
Numerical Simulation of Liquid Water and Gas Flow in a Channel and a Simplified Gas Diffusion Layer Model of Polymer Electrolyte Membrane Fuel Cells Using the Lattice Boltzmann Method
,”
J. Power Sources
,
193
, pp.
24
31
.
15.
Chapuis
,
O.
,
Prat
,
M.
,
Quintard
,
M.
,
Chane-Kane
,
E.
,
Guillot
,
O.
, and
Mayer
,
N.
, 2008, “
Two-Phase Flow and Evaporation in Model Fibrous Media Application to the Gas Diffusion Layer of PEM Fuel Cells
,”
J. Power Sources
,
178
, pp.
258
268
.
16.
Djilali
,
N.
, 2007, “
Computational Modelling of Polymer Electrolyte Membrane (PEM) Fuel Cells: Challenges and Opportunities
,”
Energy
,
32
, pp.
269
280
.
17.
Fluckiger
,
R.
,
Freunberger
,
S. A.
,
Kramer
,
D.
,
Wokaun
,
A.
,
Scherer
,
G. G.
, and
Buchi
,
F. N.
, 2008, “
Anisotropic, Effective Diffusivity of Porous Gas Diffusion Layer Materials for PEFC
,”
Electrochim. Acta
,
54
, pp.
551
559
.
18.
Park
,
J.
,
Matsubara
,
M.
, and
Li
,
X.
, 2007, “
Application of Lattice Boltzmann Method to a Micro-Scale Flow Simulation in the Porous Electrode of a PEM Fuel Cell
,”
J. Power Sources
,
173
, pp.
404
414
.
19.
Doormaal
,
M. A. V.
, and
Pharoah
,
J. G.
, 2009, “
Determination of Permeability in Fibrous Porous Media Using the Lattice Boltzmann Method With Application to PEM Fuel Cells
,”
Int. J. Numer. Methods Fluids
,
59
, pp.
75
89
.
20.
Wang
,
Y.
,
Cho
,
S.
,
Thiedmann
,
R.
,
Schmidt
,
V.
,
Lehnert
,
W.
, and
Feng
,
X.
, 2010, “
Stochastic Modeling and Direct Simulation of the Diffusion Media for Polymer Electrolyte Fuel Cells
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1128
1138
.
21.
Lindquist
,
W. B.
,
Lee
,
S. M.
,
Coker
,
D. A.
,
Jones
,
K. W.
, and
Spanne
,
P.
, 1996, “
Medial Axis Analysis of Three Dimensional Tomographic Images of Drill Core Samples
,”
J. Geophys. Res.
,
101B
, pp.
8297
8310
.
22.
Joshi
,
A. S.
,
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
, 2007, “
Lattice Boltzmann Modeling of 2D Gas Transport in a Solid Oxide Fuel Cell Anode
,”
J. Power Sources
,
164
, pp.
631
638
.
23.
Sinha
,
P. K.
,
Mukherjee
,
P. P.
, and
Wang
,
C. Y.
, 2007, “
Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells
,”
J. Mater. Chem.
,
17
, pp.
3089
3103
.
24.
Schulz
,
V. P.
,
Becker
,
J.
,
Wiegmann
,
A.
,
Mukherjee
,
P. P.
, and
Wang
,
C. Y.
, 2007, “
Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Fuel Morphology Approach
,”
J. Electrochem. Soc.
,
154
(
4
), pp.
B419
B426
.
25.
Koido
,
T.
,
Furusawa
T.
, and
Moriyama
,
K.
, 2008, “
An Approach of Modeling Two-Phase Transport in the Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
175
, pp.
127
136
.
26.
Niu
,
X.
,
Munekata
,
T.
,
Hyodo
,
S.
, and
Suga
,
K.
, 2007, “
An Investigation of Water-Gas Transport Processes in the Gas-Diffusion-Layer of a PEM Fuel Cell by a Multiphase Multiple-Relaxation-Time Lattice Boltzmann Model
,”
J. Power Sources
,
172
, pp.
542
552
.
27.
Suzue
,
Y.
,
Shikazono
,
N.
, and
Kasagi
,
N.
, 2008, “
Micro Modeling of Solid Oxide Fuel Cell Anode
,”
J. Power Sources
,
184
, pp.
52
59
.
28.
Hao
,
L.
, and
Cheng
,
P.
, 2009, “
Lattice Boltzmann Simulation of Anisotropic Permeability in Carbon Paper Gas Diffusion Layers
,”
J. Power Sources
,
186
, pp.
104
114
.
29.
He
,
W.
,
Yi
,
J.
, and
Nguyen
,
T.
, 2000, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
,
46
(
10
), pp.
2053
2064
.
30.
Springer
,
T.
,
Zawodzinski
,
T.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
, pp.
2334
2342
.
31.
Mathias
,
M.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003,
Handbook of Fuel Cells Fundamentals, Technology and Applications
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.