The reforming of methanol can be an alternative source of hydrogen for fuel cells because it has many practical advantages over hydrogen, mainly due to the technological limitations related to the storage, supply, and distribution of the latter. However, despite the ease of methanol handling, impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor, CO, and CO2 are also illustrated.

References

References
2.
Garland
,
N.
,
Benjamin
,
T.
, and
Kopasz
,
J.
, 2007, “
DOE Fuel Cell Program: Durability Technical Targets and Testing Protocols
,”
ECS Transactions
,
11
(
1
), pp.
923
931
.
3.
Methanex Corporation®
, 2006,
“Technical Information and Safe Handling Guide for Methanol.”
4.
Choi
,
P.
,
Jalani
,
N. H.
, and
Datta
,
R.
, 2005, “
Thermodynamics and Proton Transport in Nafion
,”
J. Electrochem. Soc.
,
152
(
3
), pp.
E123
E130
.
5.
Zhang
,
J.
,
Xie
,
Z.
,
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
,
Navessin
,
T.
,
Shi
,
Z.
,
Song
,
D.
,
Wang
,
H.
,
Wilkinson
,
D. P.
,
Liu
,
Z.-S.
, and
Holdcroft
,
S.
, 2006, “
High Temperature PEM Fuel Cells
,”
J. Power Sources
,
160
(
2
), pp.
872
891
.
6.
Yan
,
L.
,
Zhu
,
S.
,
Ji
,
X.
, and
Lu
,
W.
, 2007, “
Proton Hopping in Phosphoric Acid Solvated Nafion Membrane: A Molecular Simulation Study
,”
J. Phy. Chem. B
,
111
(
23
), pp.
6357
6363
.
7.
Daletou
,
M. K.
,
Kallitsis
,
J. K.
,
Voyiatzis
,
G.
, and
Neophytides
,
S. G.
, 2009, “
The Interaction of Water Vapors With H3PO4 Imbibed Electrolyte Based on PBI/Polysulfone Copolymer Blends
,”
J. Membr. Sci.
,
326
(
1
), pp.
76
83
.
8.
Yu
,
S.
,
Xiao
,
L.
, and
Benicewicz
,
B. C.
, 2008, “
Durability Studies of PBI-based High Temperature PEMFCs
,”
Fuel Cells
,
8
(
3–4
), pp.
165
174
.
9.
Li
,
Q.
,
Jensen
,
J. O.
,
Savinell
,
R. F.
, and
Bjerrum
,
N. J.
, 2009, “
High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells
,”
Prog. Polym. Sci.
,
34
(
5
), pp.
449
477
.
10.
Boer
,
H.
, 1995, “
Mass Flow Controlled Evaporation System
,”
J. Phys. IV
,
05
(
C5
), pp.
961
966
.
11.
Lynch
,
B.
,
Narasimham
,
P. L.
, and
Partus
,
F. P.
, 1986,
“Methods and Apparatus for Vapor Delivery Control in Optical Preform Manufacture,”
U.S. Patent No. 4,582,480.
12.
Mcmenamin
,
J.
, 1984,
“Vapor Mass Flow Control System,”
U.S. Patent No. 4,436,674.
13.
Mcmenamin
,
J.
, 1983,
“Vapor Mass Flow Control System,”
U.S. Patent No. 4,393,013.
14.
Partus
,
F.
, 1980,
“Vapor Delivery System and Method,”
U.S. Patent No. 4,220,460.
15.
Ross
,
E.
, 1977,
“Saturated Liquid/Vapor Generating and Dispensing,”
U.S. Patent No. 4,051,886.
16.
Karlicek
,
T. A.
, and
Lee
,
D. H.
, 2008, “
Considerations in the Selection of Vapor Delivery Sub-Systems
,”
Gases and Instrumentation
,
2
.
17.
Love
,
A.
,
Middleman
,
S.
, and
Hochberg
,
A. K.
, 1993, “
The Dynamics of Bubblers as Vapor Delivery Systems
,”
J. Cryst. Growth
,
129
(
1–2
), pp.
119
133
.
18.
Andreasen
,
S. J.
,
Mosbæk
,
R.
,
Vang
,
J. R.
,
Kær
,
S. K.
, and
Araya
,
S. S.
, 2010, “
EIS Characterization of the Poisoning Effects of CO and CO2 on a PBI Based HT-PEM Fuel Cell
,”
ASME 28th International Conference on Fuel Cell Science
,
Engineering and Technology
,
1
, pp.
27
36
.
You do not currently have access to this content.