This paper reports a new electrochemical performance study performed on a planar SOFC cell. This study consists of a 2D model developed using a commercial software, namely Comsol Multiphysics. The model includes fluid dynamics, electrochemistry, electrical conduction, and diffusion physics. This model was built using the actual button cell testing geometry and using experimental data for validation purposes. The objective of this study is to understand the effects of the testing setup used on the cell performance and to recommend an improved design or geometry where the cell performance is independent of any flow maldistribution in both the air and fuel side of the SOFC cell. The air and fuel flow rates are studied to determine the effects on the cell performance. The effects of electrode porosities are studied together with the fuel and air flow rates. The distance from the SOFC cell to the discharge fuel feed tube and air chamber geometry are studied as well. The modeling results indicate that the SOFC electrochemical performance becomes independent of any flow maldistribution at relatively high flow rates for both fuel and air. Reduced electrode porosities play a role in the cell performance, and larger flow rates are required in order to achieve a cell performance independent of flow rates. The cell performance is also affected by the distance from the SOFC cell to the fuel discharge tube and the air chamber geometry. The behavior seen in the cell performance can be explained by a non-uniform mole fraction of reactants near the electrode surface.

References

References
1.
Singhal
,
S. C.
, and
Kendall
,
K.
, eds., 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
New York
.
2.
Ma
,
L.
,
Ingham
,
D. B.
,
Pourkashanian
,
M.
, and
Carcadea
,
E.
, 2005, “
Review of the Computational Fluid Dynamics Modeling of Fuel Cells
,”
J. Fuel Cell Sci. Technol.
,
2
, pp.
246
257
.
3.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
, pp.
130
140
.
4.
Kakaça
,
S.
,
Pramuanjaroenkijb
,
A.
, and
Zhoub
,
X. Y.
, 2007, “
A Review of Numerical Modeling of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
32
, pp.
761
786
.
5.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
, 2007, “
Parametric Study of Solid Oxide Fuel Cell Performance
,”
Energy Convers. Manage.
,
48
, pp.
1525
1535
.
6.
DiGiuseppe
,
G.
, 2007, “
The Electrical Performance of a 5-Cell Planar SOFC Stack
,”
Solid Oxide Fuel Cells X
,
K.
Eguchi
,
S. C.
Singhal
,
H.
Yokokawa
, and
J.
Mizusaki
, eds.,
The Electrochemical Society Transactions
,
Pennington, NJ
, pp.
205
213
.
7.
Simner
,
S. P.
,
Anderson
,
M. D.
,
Engelhard
,
M. H.
, and
Stevenson
,
J. W.
, 2006, “
Degradation Mechanisms of La–Sr–Co–Fe–O3 SOFC Cathodes
,”
Electrochem. Solid-State Lett.
,
9
, pp.
A478
A481
.
8.
Mai
,
A.
,
Becker
,
M.
,
Assenmacher
,
W.
,
Tietz
,
F.
,
Hathiramani
,
D.
,
Ivers-Tiffée
,
E.
,
Stöver
,
D.
, and
Mader
,
W.
, 2006, “
Time-Dependent Performance of Mixed-Conducting SOFC Cathodes
,”
Solid State Ionics
,
177
, pp.
1965
1968
.
9.
Kim
,
J. Y.
,
Sprenkle
,
V. L.
,
Canfield
,
N. L.
,
Meinhardt
,
K. D.
, and
Chick
,
L. A.
, 2006, “
Effects of Chrome Contamination on the Performance of La0.6Sr0.4Co0.2Fe0.8O3 Cathode Used in Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
153
, pp.
A880
A886
.
10.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Uhlenbruck
,
S.
,
Tietz
,
F.
, and
Stover
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells. Part I. Variation of Composition
,”
Solid State Ionics
,
176
, pp.
1341
1350
.
11.
Kusaba
,
H.
,
Shibata
,
Y.
,
Sasaki
,
K.
, and
Teraoka
,
Y.
, 2006, “
Surface Effect on Oxygen Permeation Through Dense Membrane of Mixed-Conductive LSCF Perovskite-Type Oxide
,”
Solid State Ionics
,
177
, pp.
2249
2253
.
12.
Hansen
,
K. K.
, and
Vels Hansen
,
K.
, 2007, “
A-Site Deficient (La0.6Sr0.4)1−sFe0.8Co0.2O3−δ Perovskites as SOFC Cathodes
,”
Solid State Ionics
,
178
, pp.
1379
1384
.
13.
Bae
,
J.
,
Lima
,
S.
,
Jee
,
H.
,
Kima
,
J.
,
Yoo
,
Y -S.
, and
Lee
,
T.
, 2007, “
Small Stack Performance of Intermediate Temperature-Operating Solid Oxide Fuel Cells Using Stainless Steel Interconnects and Anode-Supported Single Cell
,”
J. Power Sources
,
172
(
1
), pp.
100
107
.
14.
Ralph
,
J. M.
,
Rossignol
,
C.
, and
Kumar
,
R.
, 2003, “
Cathode Materials for Reduced-Temperature SOFCs
,”
J. Electrochem. Soc.
,
150
, pp.
A1518
A1522
.
15.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnewc
,
G.
, 2004, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng. J.
,
102
, pp.
61
69
.
16.
Chase
,
M. W.
, 1998,
JANAF Thermochemical Tables
,
4th ed.
, Monograph No. 9,
J. Phys. Chem. Ref. Data
, Gaithersburg, MD.
17.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
,
106
, pp.
284
294
.
18.
Prentice
,
G.
, 1990,
Electrochemical Engineering Principles
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Newman
,
J. S.
, and
Thomas-Alyea
,
K. E.
, 2004,
Electrochemical Systems
,
3rd ed.
,
Wiley
,
New York
.
20.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
, 2005, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
, pp.
A2427
A2440
.
21.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
22.
Todd
,
B.
, and
Young
,
J. B.
, 2002, “
Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling
,”
J. Power Sources
,
110
, pp.
186
200
.
23.
Zhu
,
H.
, and
Kee
,
R. J.
, 2007, “
The Influence of Current Collection on the Performance of Tubular Anode-Supported SOFC Cells
,”
J. Power Sources
,
169
, pp.
315
326
.
24.
Zhao
,
F.
,
Armstrong
,
T. J.
, and
Virkar
,
A. V.
, 2003, “
Measurement of O2-N2 Effective Diffusivity in Porous Media at High Temperatures Using an Electrochemical Cell
,”
J. Electrochem. Soc.
,
150
, pp.
A249
A256
.
25.
Barbir
,
F.
, 2005,
PEM Fuel Cells: Theory and Practice
,
Elsevier
,
New York
.
26.
Gazzarri
,
J. I.
, and
Kesler
,
O.
, 2007, “
Non-Destructive Delamination Detection in Solid Oxide Fuel Cells
,”
J. Power Sources
,
167
, pp.
430
441
.
27.
Kharton
,
V. V.
,
Marques
,
F. M. B.
, and
Atkinson
,
A.
, 2004, “
Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review
,”
Solid State Ionics
,
174
, pp.
135
149
.
28.
Swierczek
,
K.
, and
Gozu
,
M.
, 2007, “
Structural and Electrical Properties of Selected La1−xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 Perovskite Type Oxide
,”
J. Power Sources
,
173
, pp.
695
699
.
29.
Liu
,
J.
,
Co
,
A. C.
,
Paulson
,
S.
, and
Birss
,
V. I.
, 2006, “
Oxygen Reduction at Sol–Gel Derived La0.8Sr0.2Co0.8Fe0.2O3 Cathodes
,”
Solid State Ionics
,
177
, pp.
377
387
.
You do not currently have access to this content.