Solid oxide fuel cells (SOFC) are the most advanced energy system with the highest thermal efficiency. Current trend of research is on less than 10 kW scale, which requires compact fuel processing systems. Even if internal reforming in the stack is also a possible option, it causes significant temperature gradients and thermal stress. As an alternative, a compact heat exchange reformer (CHER) with a plate-fin co-flow or counter-flow configuration is proposed. Such a system integrates the heat management and reforming in one compact unit. This paper focuses on simulation of transient characteristics of CHER during the initial phase of start-up of small SOFC systems. Steam reforming (SR) and water-gas shift (WGS) reactions are chosen as the most appropriate reforming model. CHER is modeled as two-dimensional array of finite control volumes, and they are modeled with transient energy equations and dynamic molar balance equations. In addition, both reaction enthalpy and convection heat transfer between the catalyst-coated fins and fuel-steam mixture channels are considered. Several parametric simulations are performed as methane steam as a primary fuel mixture as a function of different operating temperature, steam-to-carbon ratio at the inlet, pressure gradient across the CHER, channel length, and flow configuration (co-flow and counter-flow).

References

References
1.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York
, pp.
1435
1439
.
2.
O’Hayre
,
R. P.
,
Cha
,
S.
,
Colella
,
W.
, 2006,
Fuel Cell Fundamentals
,
Wiley
,
New York
, pp.
282
304
.
3.
Willamas
,
M. C.
, and
George
,
T. J.
, 1992,
“Research Issues in Molten Carbon-572 ate Fuel Cells: Pressurization,”
IECEC
,
3
, pp.
263
267
.
4.
Stauffer
,
D. B.
,
Hirschenhofer
,
J. H.
, and
White
,
J. S.
, 1994,
“Carbon Dioxide Capture in Fuel Cell Power Systems,”
Proceedings of Intersociety Energy Conversion Engineering Conference
, Vol.
3
, pp.
1120
1125
.
5.
Ahrned
,
S.
,
Krumpelt
,
M.
,
Kumar
,
R.
,
Lee
,
S.
,
Carter
,
J.
,
Wilkenhoener
,
R.
, and
Marshall
,
C.
, 1998, “
Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels
,” 1988 Fuel Cell Seminar, Palm Springs, CA, November 16–19.
6.
Pukrushpan
,
J.
,
Stefanopoulou
,
A.
,
Varigonda
,
S.
,
Pedersen
,
L.
,
Ghosh
,
S.
, and
Peng
,
H.
, 2003,
“Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications,”
American Control Conference, June 4–6,
Denver, Colorado
.
7.
Chaniotis
,
A.
, and
Poulikakos
,
D.
, 2005,
“Modeling and Optimization of Catalytic Partial Oxidation Methane Reforming for Fuel Cells,”
J. Power Sources
,
142
, pp.
184
193
.
8.
Achenbach
,
E.
, and
Riensche
,
E.
, 1994, “
Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells
,”
J. Power Sources
,
52
, pp.
283
288
.
9.
Peters
,
R.
,
Dahl
,
R.
,
Kluttgen
,
U.
,
Palm
,
C.
, and
Stolten
,
D.
, 2002, “
Internal Reforming of Methane in Solid Oxide Fuel Cell Systems
,”
J. Power Sources
,
106
, pp.
238
244
.
10.
Agnew
,
G. D.
,
Bernardi
,
D.
,
Collins
,
R. D.
, and
Cunningham
,
R. H.
, 2006, “
An Internal Reformer for a Pressurised SOFC System
,”
J. Power Sources
,
157
, pp.
832
836
.
11.
Nikooyeh
,
K.
,
Ayodeji
,
A.
,
Jeje
,
A.
, and
Hill
,
J. M.
, 2007, “
3D Modeling of Anode-Supported Planar SOFC With Internal Reforming of Methane
,”
J. Power Sources
,
171
, pp.
601
609
.
12.
Janardhanan
,
V. M.
,
Heuveline
,
V.
, and
Deutschmann
,
O.
, 2007, “
Performance Analysis of a SOFC Under Direct Internal Reforming Conditions
,”
J. Power Sources
,
172
, pp.
296
307
.
13.
Patel
,
K. S.
, and
Sunol
,
A. K.
, 2006, “
Dynamic Behavior of Methane Heat Exchange Reformer for Residential Fuel Cell Power Generation System
,”
J. Power Sources
,
161
, pp.
503
512
.
14.
Klein
,
J.
,
Bultel
,
Y.
,
Georges
,
S.
, and
Pons
,
M.
, 2007, “
Modeling of a SOFC Fueled by Methane: From Direct Internal Reforming to Gradual Internal Reforming
,”
Chem. Engg. Sci.
,
62
, pp.
1636
1649
.
15.
Aguiar
,
P.
,
Chadwick
,
D.
, and
Kershenbaum
,
D.
, 2002, “
Modelling of an Indirect Internal Reforming Solid Oxide Fuel Cell
,”
Chem. Engg. Sci.
,
57
, pp.
1665
1677
.
16.
Dicks
,
A. L.
, 1998, “
Advances in Catalysts for Internal Reforming in High Temperature Fuel Cells
,”
J. Power Sources
,
71
, pp.
111
122
.
17.
Anxionnaz
,
Z.
,
Cabassud
,
M.
,
Gourdon
,
C.
, and
Tochon
,
P.
, 2008, “
Heat Exchanger/Reactors (HEX Reactors): Concepts, Technologies: State-of-the-Art
,”
Chemical Engineering and Processing
,
47
(
12
), pp.
2029
2050
.
18.
Pan
,
L.
, and
Wang
,
S.
, 2005, “
Modeling of a Compact Plate-Fin Reformer for Methanol Steam Reforming in Fuel Cell Systems
,”
Chem. Eng. J.
,
108
, pp.
51
58
.
19.
Stefanidis
,
G.
, and
Vlachos
,
D.
, 2008, “
Millisecond Methane Steam Reforming Via Process and Catalyst Intensification
,”
Chem. Engg. and Tech.
,
31
(
8
), pp.
1201
1209
.
20.
Zhang
,
H.
,
Wang
,
L.
,
Weng
,
S.
, and
Su
,
M.
, 2008, “
Performance Research on the Compact Heat Exchange Reformer Used for High Temperature Fuel Cell Systems
,”
J. Power Sources
,
183
, pp.
282
294
.
21.
Fox
,
R. W.
, and
Mcdonald
,
A. T.
, 1999,
Introduction to Fluid Mechanics
,
Wiley
,
New York
, pp.
359
361
.
22.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2006,
Introduction to Heat Transfer
,
5th ed.
,
Wiley
,
New York
, pp.
458
460
.
23.
Whitten
,
K. W.
,
Davis
,
R. E.
, and
Peck
,
M. L.
, 2004,
General Chemistry
, Brooks/Cole, Belmont, CA, p. 626.
24.
Xu
,
J.
, and
Froment
,
G.
, 1989, “
Methane Steam Reforming, Methanation and Water-Gas Shift: 1. Intrinsic Kinetics
,”
AIChE Journal
,
35
(
1
), pp.
88
96
.
25.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2001,
Transport Phenomena
,
Wiley
,
New York
, p.
27
.
26.
Mueller
,
F.
, and
Jabbari
,
F.
, 2007, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power Sources
,
172
, pp.
308
323
.
You do not currently have access to this content.