The proton exchange membrane fuel cell (PEMFC) is a particularly promising energy conversion device for use in stationary or vehicular applications. PEMFCs provide high efficiency and power density, with zero emissions, low operating temperatures, quick start-up, and long lifetime. While the usage of PEMFCs has been on the increase, their commercialization has been hindered by technical issues such as water flooding in their cathodes. Flow field optimization is one approach to mitigating these issues, as the geometry of the flow channels within a PEMFC influences reactant transport, water management, and reactant utilization efficiency, and thus the final performance of a PEMFC system. This paper looks at some of the recent research that has been focused on modeling PEMFCs, exploring phenomena in them, and improving their performance, especially through flow field optimization. This paper shows how such modeling can provide useful information for PEMFC optimization, and, based on the research reviewed, presents recommendations that can be implemented in optimizing the design of a PEMFC bipolar for maximum performance. Among more traditional designs, the reviewed research shows that a serpentine flow field with small channel and rib size would perform the best at low operating voltages, and could be further improved by utilizing diverging channels with varying heights. Furthermore, additions such as baffles have been shown to improve the performance of various flow channel designs.

References

References
1.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
, 2004, “
Optimization of the Cathode Geometry in Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Chem. Eng. Sci.
,
59
, pp.
5883
5895
.
2.
Carcadea
,
E.
,
Stefanescu
,
I.
,
Ionete
,
R. E.
,
Ene
,
H.
,
Ingham
,
D. B.
, and
Ma
,
L.
, 2008, “
PEM Fuel Cell Geometry Optimisation using Mathematical Modelling
,”
Int. J. Multiphys.
,
2
(
3
), pp.
313
326
.
3.
Kopanidis
,
A.
,
Theodorakakos
,
A.
,
Gavaises
,
M.
, and
Bouris
,
D.
, 2011, “
Pore Scale 3D Modelling of Heat and Mass Transfer in the Gas Diffusion Layer and Cathode Channel of a PEM Fuel Cell
,”
Int. J. Thermal Sci.
,
50
, pp.
456
467
.
4.
Bao
,
C.
,
Ouyang
,
M.
, and
Yi
,
B.
, 2006, “
Analysis of Water Management in Proton Exchange Membrane Fuel Cells
,”
Tsinghua Sci. Technol.
,
11
, pp.
54
64
.
5.
Wang
,
X. D.
,
Duan
,
Y. Y.
, and
Yan
,
W. M.
, 2007, “
Novel Serpentine-Baffle Flow Field Design for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
173
, pp.
210
221
.
6.
Kuo
,
J. K.
,
Yen
,
T. S.
, and
Chen
,
C. K.
, 2008, “
Improvement of Performance of Gas Flow Channel in PEM Fuel Cells
,”
Energy Convers. Manage.
,
49
, pp.
2776
2787
.
7.
Wang
,
X. D.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
, and
Peng
,
X. F.
, 2008, “
Effects of Flow Channel Geometry on Cell Performance for PEM Fuel Cells with Parallel and Interdigitated Flow Fields
,”
Electrochim. Acta
,
53
, pp.
5334
5343
.
8.
Wang
,
X. D.
,
Zhang
,
X. X.
,
Liu
,
T.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
, and
Lee
,
D. J.
, 2010, “
Channel Geometry Effect for Proton Exchange Membrane Fuel Cell With Serpentine Flow Field Using a Three-Dimensional Two-Phase Model
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, p.
051019
.
9.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
, 2011, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
, pp.
981
1007
.
10.
Cordiner
,
S.
,
Lanzani
,
S. P.
,
Mulone
,
V.
,
Chiapparini
,
M.
,
D’Anzi
,
A.
, and
Orsi
,
D.
, 2009, “
Polymer Electrolyte Fuel Cell Design Based on Three-Dimensional Computational Fluid Dynamics Modeling
,”
ASME J. Fuel Cell Sci. Technol.
,
6
, p.
021310
.
11.
National Institute of Standards and Technology, May 2006, PEM Fuel Cells (Online), http://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html.
12.
Siefert
,
N. S.
, and
Lister
,
S.
, 2011, “
Voltage Loss and Fluctuation in Proton Exchange Membrane Fuel Cells: The Role of Cathode Channel Plurality and Air Stoichiometric Ratio
,”
J. Power Sources
,
196
, pp.
1948
1954
.
13.
Cheddie
,
D.
and
Munroe
,
N.
, 2005, “
Review and Comparison of Approaches to Proton Exchange Membrane Fuel Cell Modeling
,”
J. Power Sources
,
147
, pp.
72
84
.
14.
Liu
,
X.
,
Guo
,
H.
, and
Ma
,
C.
, 2006, “
Water Flooding and Two-Phase Flow in Cathode Channels of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
156
, pp.
267
280
.
15.
Su
,
A.
,
Weng
,
F. B.
,
Hsu
,
C. Y.
, and
Chen
,
Y. M.
, 2006, “
Studies on Flooding in PEM Fuel Cell Cathode Channels
,”
Int. J. Hydrogen Energy
,
31
, pp.
1031
1039
.
16.
Akhtar
,
N.
,
Qureshi
,
A.
,
Scholta
,
J.
,
Hartnig
,
C.
,
Messerschmidt
,
M.
, and
Lehnert
,
W.
, 2009, “
Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes
,”
Int. J. Hydrogen Energy
,
34
, pp.
3104
3111
.
17.
Liu
,
X.
,
Guo
,
H.
,
Ye
,
F.
, and
Ma
,
C.
, 2008, “
Flow Dynamic Characteristics in Flow Field of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
, pp.
1040
1051
.
18.
Jiao
,
K.
,
Zhou
,
B.
, and
Quan
,
P.
, 2006, “
Liquid Water Transport in Parallel Serpentine Channels With Manifolds on Cathode Side of a PEM Fuel Cell Stack
,”
J. Power Sources
,
154
, pp.
124
137
.
19.
Suresh
,
P. V.
, and
Jayanti
,
S.
, 2010, “
Effect of Air Flow on Liquid Water Transport Through a Hydrophobic Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
, pp.
6872
6886
.
20.
Dawes
,
J. E.
,
Hanspal
,
N. S.
,
Family
,
O. A.
, and
Turan
,
A.
, 2009, “
Three-Dimensional CFD Modelling of PEM Fuel Cells: An Investigation Into the Effects of Water Flooding
,”
Chem. Eng. Sci.
,
64
, pp.
2781
2794
.
21.
Steinkamp
,
K.
,
Schumacher
,
J. O.
,
Goldsmith
,
F.
,
Ohlberger
,
M.
, and
Ziegler
,
C.
, 2008, “
A Nonisothermal PEM Fuel Cell Model Including Two Water Transport Mechanisms in the Membrane
,”
ASME J. Fuel Cell Sci. Technol.
,
5
, p.
011007
.
22.
Chen
,
Y. S.
, and
Peng
,
H.
, 2011, “
Predicting Current Density Distribution of Proton Exchange Membrane Fuel Cells With Different Flow Field Designs
,”
J. Power Sources
,
196
, pp.
1992
2004
.
23.
Peng
,
L.
,
Mai
,
J.
,
Hu
,
P.
,
Lai
,
X.
, and
Lin
,
Z.
, 2011, “
Optimum Design of the Slotted-interdigitated Channels Flow Field for Proton Exchange Membrane Fuel Cells with Consideration of the Gas Diffusion Layer Intrusion
,”
Renewable Energy
,
36
, pp.
1413
1420
.
24.
Wang
,
X. D.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
, and
Peng
,
X. F.
, 2008, “
Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs
,”
J. Power Sources
,
175
, pp.
397
407
.
25.
Kanezaki
,
T.
,
Li
,
X.
, and
Baschuk
,
J. J.
, 2006, “
Cross-Leakage Flow Between Adjacent Flow Channels in PEM Fuel Cells
,”
J. Power Sources
,
162
, pp.
415
425
.
26.
Pharoah
,
J. G.
, 2005, “
Fluid Mechanics of Serpentine Flow Fields on a Porous Media
,”
Int. J. Green Energy
,
2
, pp.
421
438
.
27.
Shi
,
Z.
, and
Wang
,
X.
, 2008, “
A Numerical Study of Flow Crossover between Adjacent Flow Channels in a Proton Exchange Membrane Fuel Cell With Serpentine Flow Field
,”
J. Power Sources
,
185
, pp.
985
992
.
28.
Oosthuizen
,
P. H.
, and
Austin
,
M.
, 2005,
“Channel-to-Channel Pressure Differences in Seprentine Minichannel Flow Systems,”
Microscale Thermophys. Eng.
,
9
, pp.
49
61
.
29.
Kazim
,
A.
,
Liu
,
H. T.
, and
Forges
,
P.
, 1999, “
Modelling of Performance of PEM Fuel Cells With Conventional and Interdigitated Flow Fields
,”
J. Appl. Electrochem.
,
29
, pp.
1409
1416
.
30.
Kazim
,
A.
,
Forges
,
P.
, and
Liu
,
H. T.
, 2003, “
Effects of Cathode Operating Conditions on Performance of a PEM Fuel Cell With Interdigitated Flow Fields
,”
Int. J. Energy Res.
,
27
, pp.
401
414
.
31.
Hu
,
M.
,
Gu
,
A.
,
Wang
,
M.
,
Zhu
,
X.
, and
Yu
,
L.
, 2004,
Three Dimensional, Two Phase Flow Mathematical Model for PEM Fuel Cell: Part I. Model Development,”
Energy Convers. Manage.
,
45
, pp.
1861
1882
.
32.
Hu
,
M.
,
Zhu
,
X.
,
Wang
,
M.
,
Gu
,
A.
, and
Yu
,
L.
, 2004, “
Three Dimensional, Two Phase Flow Mathematical Model for PEM Fuel Cell: Part II. Analysis and Discussion of the Internal Transport Mechanisms
,”
Energy Convers. Manage.
,
45
, pp.
1883
1916
.
33.
Ferng
,
Y. H.
,
Su
,
A.
, and
Lu
,
S. M.
, 2008, “
Experiment and Simulation Investigations for Effects of Flow Channel Patterns on the PEMFC Performance
,”
Int. J. Energy Res.
,
32
, pp.
12
23
.
34.
Lobato
,
J.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
,
Pinar
,
F. J.
,
Mena
,
E.
, and
Úbeda
,
D.
, 2010, “
Three-Dimensional Model of a 50 cm2 High Temperature PEM Fuel Cell. Study of the Flow Channel Geometry Influence
,”
Int. J. Hydrogen Energy
,
35
, pp.
5510
5520
.
35.
Lobato
,
J.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
,
Pinar
,
F. J.
, and
Úbeda
,
D.
, 2011, “
Study of Flow Channel Geometry Using Current Distribution Measurement in a High Temperature Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
196
, pp.
4209
4217
.
36.
Jang
,
J. H.
,
Yan
,
W. M.
,
Li
,
H. Y.
, and
Tsai
,
W. C.
, 2008, “
Three-Dimensional Numerical Study on Cell Performance and Transport Phenomena of PEM Fuel Cells With Conventional Flow Fields
,”
Int. J. Hydrogen Energy
,
33
, pp.
156
164
.
37.
Wang
,
X. D.
,
Zhang
,
Z. Z.
,
Yan
,
W. M.
,
Lee
,
D. J.
, and
Su
,
A.
, 2009, “
Determination of the Optimal Active Area for Proton Exchange Membrane Fuel Cells With Parallel, Interdigitated or Serpentine Designs
,”
Int. J. Hydrogen Energy
,
34
, pp.
3823
3832
.
38.
Li
,
H. Y.
,
Weng
,
W. C.
,
Yan
,
W. M.
, and
Wang
,
X. D.
, 2011, “
Transient Characteristics of Proton Exchange Membrane Fuel Cells With Different Flow Field Designs
,”
J. Power Sources
,
196
, pp.
235
245
.
39.
Chen
,
F.
,
Wen
,
Y. Z.
,
Chu
,
H. S.
,
Yan
,
W. M.
, and
Soong
,
C. Y.
, 2004, “
Convenient Two-Dimensional Model for Design of Fuel Channels for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
128
, pp.
125
134
.
40.
Sun
,
L.
,
Oosthuizen
,
P. H.
, and
McAuley
,
K. B.
, 2006, “
A Numerical Study of Channel-to-Channel Flow Cross-Over Through the Gas Diffusion Layer in a PEM-Fuel-Cell Flow System Using a Serpentine Channel With Trapezoidal Cross-Sectional Shape
,”
Int. J. Thermal Sci.
,
45
, pp.
1021
1026
.
41.
Baschuk
,
J. J.
, and
Li
,
X.
, 2009, “
A Comprehensive, Consistent and Systematic Mathematical Model of PEM Fuel Cells
,”
Appl. Energy
,
86
, pp.
181
193
.
42.
Liu
,
X. L.
,
Tan
,
Y. W.
,
Tao
,
W. Q.
, and
He
,
Y. L.
, 2005, “
A Hybrid Model of Cathode of PEM Fuel Cell Using the Interdigitated Gas Distributor
,”
Int. J. Hydrogen Energy
,
31
, pp.
379
389
.
43.
Grujicic
,
M.
,
Zhao
,
C. L.
,
Chittajallu
,
K. M.
, and
Ochterbeck
,
J. M.
, 2004, “
Cathode and Interdigitated Air Distributor Geometry Optimization in Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Materials Sci. Eng. B
,
108
, pp.
241
252
.
44.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
, 2004, “
Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Appl. Surf. Sci.
,
227
, pp.
56
72
.
45.
Squadrito
,
G.
,
Barbera
,
O.
,
Giacoppo
,
G.
,
Urbani
,
F.
, and
Passalacqua
,
E.
, 2007, “
Computer Aided Fuel Cell Design and Scale-up, Comparison Between Model and Experimental Results
,”
J. Appl. Electrochem.
,
37
, pp.
87
93
.
46.
Kumar
,
P. M.
, and
Kolar
,
A. J.
, 2010, “
Effect of Cathode Channel Dimensions on the Performance of an Air-Breathing PEM Fuel Cell
,”
Int. J. Thermal Sci.
,
49
, pp.
844
857
.
47.
Kumar
,
P. M.
and
Kolar
,
A. K.
, 2010, “
Effect of Cathode Design on the Performance of an Air-Breathing Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
, pp.
671
681
.
48.
Zamel
,
N.
, and
Li
,
X.
, 2008, “
A Parametric Study of Multi-phase and Multi-species Transport in the Cathode of PEM Fuel Cells
,”
Int. J. Energy Res.
,
32
, pp.
698
721
.
49.
Zamel
,
N.
, and
Li
,
X.
, 2010, “
Non-isothermal Multi-phase Modeling of PEM Fuel Cell Cathode
,”
Int. J. Energy Res.
,
34
, pp.
568
584
.
50.
Wang
,
X. D.
,
Yan
,
W. M.
,
Duan
,
Y. Y.
,
Weng
,
F. B.
,
Jung
,
G. B.
, and
Lee
,
C. Y.
, 2010, “
Numerical Study on Channel Size Effect for Proton Exchange Membrane Fuel Cell With Serpentine Flow Field
,”
Energy Convers. Manage.
,
51
, pp.
959
968
.
51.
Yan
,
W. M.
,
Liu
,
H. C.
,
Soong
,
C. Y.
,
Chen
,
F.
, and
Cheng
,
C. H.
, 2006, “
Numerical Study on Cell Performance and Local Transport Phenomena of PEM Fuel Cells With Novel Flow Field Designs
,”
J. Power Sources
,
161
, pp.
907
919
.
52.
Wang
,
X. D.
,
Huang
,
Y. X.
,
Cheng
,
C. H.
,
Jang
,
J. Y.
,
Lee
,
D. J.
,
Yan
,
W. M.
, and
Su
,
A.
, 2010, “
An Inverse Geometry Design Problem for Optimization of Single Serpentine Flow Field of PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
, pp.
4247
4257
.
53.
Soong
,
C. Y.
,
Yan
,
W. M.
,
Tseng
,
C. Y.
,
Liu
,
H. C.
,
Chen
,
F.
, and
Chu
,
H. S.
, 2005, “
Analysis of Reactant Gas Transport in a PEM Fuel Cell With Partially Blocked Fuel Flow Channels
,”
J. Power Sources
,
143
, pp.
36
47
.
54.
Su
,
A.
,
Weng
,
F. B.
,
Chi
,
P. H.
,
Lu
,
S. M.
,
Jung
,
G. B.
,
Tu
,
C. H.
, and
Ferng
,
Y. M.
, 2007, “
Effect of Channel Step-Depth on the Performance of Proton Exchange Membrane Fuel Cells
,”
Proc. Inst. Mechan. Eng. Part A
,
221
, pp.
617
625
.
55.
Perng
,
S. W.
, and
Wu
,
H. W.
, 2011, “
Non-isothermal Transport Phenomenon and Cell Performance of a Cathodic PEM Fuel Cell With a Baffle Plate in a Tapered Channel
,”
Appl. Energy
,
88
, pp.
52
67
.
56.
Perng
,
S. W.
,
Wu
,
H. W.
,
Jue
,
T. C.
, and
Cheng
,
K. C.
, 2009, “
Numerical Predictions of a PEM Fuel Cell Performance Enhancement by a Rectangular Cylinder Installed Transversely in the Flow Channel
,”
Appl. Energy
,
86
, pp.
1541
1554
.
57.
Thitakamol
,
V.
,
Therdthianwong
,
A.
, and
Therdthianwong
,
S.
, 2011, “
Mid-baffle Interdigitated Flow Fields for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
, pp.
3614
3622
.
58.
Bunmark
,
N.
,
Limtrakul
,
S.
,
Fowler
,
M. W.
,
Vatanathan
,
T.
, and
Gostick
,
J.
, 2010, “
Assisted Water Management in a PEMFC With a Modified Flow Field and its Effect on Performance
,”
Int. J. Hydrogen Energy
,
35
, pp.
6887
6896
.
59.
Strickland
,
D. G.
, and
Santiago
,
J. G.
, 2010, “
In Situ-Polymerized Wicks for Passive Water Management in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
195
(
6
), pp.
1667
1675
.
60.
Lister
,
S.
,
Buie
,
C. R.
, and
Santiago
,
J. G.
, 2009, “
Engineering Model for Coupling Wicks and Electroosmotic Pumps With Proton Exchange Membrane Fuel Cells for Active Water Management
,”
Electrochim. Acta
,
54
(
26
), pp.
6223
6233
.
61.
Khazaee
,
I.
, and
Ghazikhani
,
M.
, 2011, “
Performance Improvement of Proton Exchange Membrane Fuel Cell by Using Annular Shaped Geometry
,”
J. Power Sources
,
196
, pp.
2661
2668
.
62.
Al-Baghdadi
,
M. A. R. S.
, 2008.
“Studying the Effect of Material Parameters on Cell Performance of Tubular-Shaped PEM Fuel Cell,”
Energy Convers. Manage.
,
49
, pp.
2986
2996
.
63.
Andrade
,
S. C.
,
Guerrero
,
A. H.
,
von Spakovsky
,
M. R.
,
Ascencio
,
C. E. D.
, and
Arana
,
J. C. R.
, 2010, “
Current Density and Polarization Curves for Radial Flow Field Patterns Applied to PEMFCs (Proton Exchange Membrane Fuel Cells)
,”
Energy
,
35
, pp.
920
927
.
64.
Walczyk
,
D. F.
, and
Sangra
,
J. S.
, 2010, “
A Feasibility Study of Ribbon Architecture for PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, pp.
051001
.
You do not currently have access to this content.