The use of noble catalysts and ion exchange membranes make the design of a direct borohydride fuel cell (DBFC) stack complicate and limit its application. Therefore, the development of simple, cost effective construction for DBFC stacks is necessary. In this paper, a passive DBFC stack that consists of four unit cells was designed, fabricated, and tested. The stack eliminated the need for a polyelectrolyte membrane because of the use of a metal phthalocyanine catalyst for oxygen reduction reaction (ORR), which has a high borohydride tolerance. The electrochemical experiments show that the stack can obtain open-circuit-voltage (OCV) of 3.6 V and the maximal power of 400 mW at 1.5 V at ambient temperature. In addition, the DBFC stack was successfully applied to power a radio, which can continuously run for about 3 h on refueling 8 mL 1 M borohydride solution.

References

References
1.
DeLeon
,
C. P.
,
Walsh
,
F. C.
,
Patrissi
,
C. J.
,
Madeiros
,
M. G.
,
Bessette
,
R. R.
,
Reeve
,
R. R.
,
Lakeman
,
J. B.
,
Rose
,
A.
, and
Browning
,
D.
, 2008, “
A Direct Borohydride–Peroxide Fuel Cell Using A Pd/Ir Alloy Coated Microfibrous Carbon Cathode
,”
Electrochem. Commun.
,
10
(
10
), pp.
1610
1613
.
2.
Feng
,
R. X.
,
Dong
,
H.
,
Wang
,
Y. D.
,
Ai
,
X. P.
,
Cao
,
Y. L.
, and
Yang
,
H. X.
, 2005, “
A Simple and High Efficient Direct Borohydride Fuel Cell With MnO2-Catalyzed Cathode
,”
Electrochem. Commun.
,
7
(
4
), pp.
449
452
.
3.
Cheng
,
H.
,
Scott
,
K.
, and
Lovell
,
K.
, 2006, “
Material Aspects of the Design and Operation of Direct Borohydride Fuel Cells
,”
Fuel Cells
,
6
(
5
), pp.
367
375
.
4.
Liu
,
B. H.
,
Li
,
Z. P.
, and
Suda
,
S.
, 2008, “
Development of High-Performance Planar Borohydride Fuel Cell Modules for Portable Applications
,”
J. Power Sources
,
175
(
1
), pp.
226
231
.
5.
Raman
,
R. K.
,
Choudhury
,
N. A.
, and
Shukla
,
A. K.
, 2004, “
A High Output Voltage Direct Borohydride Fuel Cell
,”
Electrochem. Solid-State Lett.
,
7
(
12
), pp.
A488
A491
.
6.
Choudhury
,
N. A.
,
Raman
,
R. K.
,
Sampath
,
S.
, and
Shukla
,
A. K.
, 2005, “
An Alkaline Direct Borohydride Fuel Cell With Hydrogen Peroxide as Oxidant
,”
J. Power Sources
,
143
(
1–2
), pp.
1
8
.
7.
DeLeon
,
C. P.
,
Walsh
,
F. C.
,
Pletcher
,
D.
,
Browning
,
D. J.
, and
Lakeman
,
J. B.
, 2006, “
Direct Borohydride Fuel Cells
,”
J. Power Sources
,
155
(
2
), pp.
172
181
.
8.
Demirci
,
U. B.
, 2007, “
Direct Borohydride Fuel Cell: Main Issues met by the Membrane–Electrodes-Assembly and Potential Solutions
,”
J. Power Sources
,
172
(
2
), pp.
676
687
.
9.
Liu
,
B. H.
, and
Li
,
Z. P.
, 2009, “
Current Status and Progress of Direct Borohydride Fuel Cell Technology Development
,”
J. Power Sources
,
187
(
2
), pp.
291
297
.
10.
Luo
,
N.
,
Miley
,
G. H.
,
Kim
,
K. J.
,
Burton
,
R.
, and
Huang
,
X. Y.
, 2008, “
Nabh4/H2O2 Fuel Cells for Air Independent Power Systems
,”
J. Power Sources
,
185
(
2
), pp.
685
690
.
11.
DeLeon
,
C. P.
,
Walsh
,
F. C.
,
Rose
,
A.
,
Lakeman
,
J. B.
,
Browning
,
D. J.
, and
Reeve
,
R. W.
, 2007, “
A Direct Borohydride—Acid Peroxide Fuel Cell
,”
J. Power Sources
,
164
(
2
), pp.
441
448
.
12.
Raman
,
R. K.
,
Prashant
,
S. K.
, and
Shukla
,
A. K.
, 2006, “
A 28-W Portable Direct Borohydride–Hydrogen Peroxide Fuel-Cell Stack
,”
J. Power Sources
,
162
(
2
), pp.
1073
1076
.
13.
Liu
,
B. H.
,
Li
,
Z. P.
,
Zhu
,
J. K.
, and
Suda
,
S.
, 2008, “
Influences of Hydrogen Evolution on the Cell and Stack Performances of the Direct Borohydride Fuel Cell
,”
J. Power Sources
,
183
(
1
), pp.
151
156
.
14.
Kim
,
C.
,
Kim
,
K. J.
, and
Ha
,
M. Y.
, 2008, “
Investigation of the Characteristics of a Stacked Direct Borohydride Fuel Cell for Portable Applications
,”
J. Power Sources
,
180
(
1
), pp.
114
121
.
15.
Chen
,
C. Y.
,
Lai
,
W. H.
,
Weng
,
B. J.
,
Chuang
,
H. J.
,
Hsieh
,
C. Y.
, and
Kung
,
C. C.
, 2008, “
Planar Array Stack Design Aided by Rapid Prototyping in Development of Air-Breathing PEMFC
,”
J. Power Sources
,
179
(
1
), pp.
147
154
.
16.
Martins
,
J. I.
, and
Nunes
,
M. C.
, 2008, “
Comparison of the Electrochemical Oxidation of Borohydride and Dimethylamine Borane on Platinum Electrodes: Implication for Direct Fuel Cells
,”
J. Power Sources
,
175
(
1
), pp.
244
249
.
17.
Ma
,
J. F.
,
Liu
,
Y. N.
,
Zhang
,
P.
, and
Wang
,
J.
, 2008, “
A Simple Direct Borohydride Fuel Cell With A Cobalt Phthalocyanine Catalyzed Cathode
,”
Electrochem. Commun.
,
10
(
1
), pp.
100
102
.
18.
Ma
,
J. F.
,
Liu
,
Y. N.
, and
Zhang
,
P.
, 2008, “
A Membraneless Direct Borohydride Fuel Cell Using LaNiO3-Catalyzed Cathode
,”
Fuel Cells
,
8
(
6
), pp.
394
398
.
19.
Lee
,
S. J.
,
Chien
,
A. C.
,
Cha
,
S. W.
,
Hayre
,
R. O.
,
Park
,
Y. I.
,
Saito
,
Y.
, and
Prinz
,
F. B.
, 2002, “
Design and Fabrication of a Micro Fuel Cell Array With ‘Flip-Flop’ Interconnection
,”
J. Power Sources
,
112
(
2
), pp.
410
418
.
You do not currently have access to this content.