The oxygen reduction activities of platinum and platinum alloy catalysts were evaluated at temperatures up to 150  °C in phosphoric acid solution. The oxygen reduction currents and open circuit potentials were measured using chronoamperometry with double potential steps to eliminate the effects of double layer charging currents and metal deactivationcould be eliminated effectively. Based on the mass activity at 0.7 V versus Ag/AgCl, the commercial PtNi catalyst showed higher performances than commercial Pt catalyst at 150 °C. The commercial PtCo catalyst showed high activities at 90 °C and 120 °C. Intermediate temperature fuel cells based on phosphoric acid doped polybenzimidazole membranes were tested with the alloy cathode catalysts. In the case of Pt–Fe alloy an enhanced performance was achieved in comparison to that with Pt carbon catalysts.

References

References
1.
Yang
,
C.
,
Costamagna
,
P.
,
Srinivasan
,
S.
,
Benziger
,
J.
, and
Bocarsly
,
A. B.
, 2001, “
Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
103
, pp.
1
9
.
2.
Ahluwalia
,
R. K.
,
Doss
,
E. D.
, and
Kumar
,
R.
, 2003, “
Performance of High-Temperature Polymer Electrolyte Fuel Cell Systems
,”
J. Power Sources
,
117
, pp.
45
60
.
3.
Hogarth
,
H. H. J.
,
Diniz da Costa
,
J. C.
, and
Lu
,
G. Q.
, 2005, “
Solid Acid Membranes for High Temperature (140°C) Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
142
, pp.
223
237
.
4.
Wainright
,
J. S.
,
Wang
,
J.-T.
,
Weng
,
D.
,
Savinell
,
R. F.
, and
Litt
,
M.
, 1995, “
Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte
,”
J. Electrochem. Soc.
,
142
, pp.
L121
L123
.
5.
Wang
,
J.-T.
,
Savinell
,
R. F.
,
Wainright
,
J.
,
Litt
,
M.
, and
Yu
,
H.
, 1996, “
A H2/O2 Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte
,”
Electrochim. Acta
,
41
, pp.
193
197
.
6.
Samms
,
S. R.
,
Wasmus
,
S.
, and
Savinell
,
R.F.
, 1996, “
Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments
,”
J. Electrochem. Soc.
,
143
, pp.
1225
1232
.
7.
Ma
,
Y.-L.
,
Wainright
,
J. S.
,
Litt
,
M. H.
, and
Savinell
,
R. F.
, 2004, “
Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
, pp.
A8
A16
.
8.
Qi
,
Z.
, and
Buelte
,
S.
, 2006, “
Effect of Open Circuit Voltage on Performance and Degradation of High Temperature PBI–H3PO4 Fuel Cells
,”
J. Power Sources
,
161
, pp.
1126
1132
.
9.
Jannasch
,
P.
, 2003, “
Recent Developments in High-Temperature Proton Conducting Polymer Electrolyte Membranes
,”
Curr. Opin. Colloid Interface Sci.
,
8
, pp.
96
102
.
10.
Honma
,
I.
,
Nakajima
,
H.
,
Nishikawa
,
O.
,
Sugimoto
,
T.
, and
Nomura
,
S.
, 2003, “
Family of High-Temperature Polymer-Electrolyte Membranes Synthesized from Amphiphilic Nanostructured Macromolecules
,”
J. Electrochem. Soc.
,
150
, pp.
A616
A619
.
11.
Kwak
,
S.-H.
,
Yang
,
T.-H.
,
Kim
,
C.-S.
, and
Yoon
,
K. H.
, 2003, “
Nafion/Mordenite Hybrid Membrane for High-Temperature Operation of Polymer Electrolyte Membrane Fuel Cell
,”
Solid State Ionics
,
160
, pp.
309
315
.
12.
Kim
,
H.
,
An
,
S.
,
Kim
,
J.
,
Moon
,
J.
,
Cho
,
S.
,
Eun
,
Y.
,
Yoon
,
H.-K.
,
Park
,
Y.
,
Kweon
,
H.-J.
, and
Shin
,
E.-M.
, 2004, “
Polybenzimidazoles for High Temperature Fuel Cell Applications
,”
Macromol. Rapid Commun.
,
25
, pp.
1410
1413
.
13.
Ramani
,
V.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
, 2004, “
Investigation of Nafion®/HPA Composite Membranes for High Temperature/Low Relative Humidity PEMFC Operation
,”
J. Membr. Sci.
,
232
, pp.
31
44
.
14.
Kwak
,
S.-H.
,
Yang
,
T.-H.
,
Kim
,
C.-S.
, and
Yoon
,
K. H.
, 2004, “
Polymer Composite Membrane Incorporated With a Hygroscopic Material for High-Temperature PEMFC
,”
Electrochim. Acta
,
50
, pp.
653
657
.
15.
Pefkianakis
,
E. K.
,
Deimede
,
V.
,
Daletou
,
M. K.
,
Gourdoupi
,
N.
, and
Kallitis
,
J. K.
, 2005, “
Novel Polymer Electrolyte Membrane, Based on Pyridine Containing Poly(Ether Sulfone), for Application in High Temperature Fuel Cells
,”
Macromol. Rapid Commun.
,
26
, pp.
1724
1728
.
16.
Asensio
,
J. A.
, and
Gomez-Romero
,
P.
, 2005, “
Recent Developments on Proton Conducting Poly(2,5-Benzimidazole) (ABPBI) Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells
,”
Fuel Cells
,
5
, pp.
336
343
.
17.
Xiao
,
L.
,
Zhang
,
H.
,
Jana
,
T.
,
Scanlon
,
E.
,
Chen
,
R.
,
Choe
,
E. W.
,
Ramanathan
,
L. S.
,
Yu
,
S.
, and
Benicewicz
,
B. C.
, 2005, “
Synthesis and Characterization of Pyridine Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications
,”
Fuel Cells
,
5
, pp.
287
295
.
18.
Baglio
,
V.
,
Blasi
,
A. D.
,
Arico
,
A. S.
,
Antonucci
,
V.
,
Antonucci
,
P. L.
,
Trakanprapai
,
C.
,
Esposito
,
V.
,
Licoccia
,
S.
, and
Traversa
,
E.
, 2005, “
Composite Mesoporous Titania Nafion-Based Membranes for Direct Methanol Fuel Cell Operation at High Temperature
,”
J. Electrochem. Soc.
,
152
, pp.
A1373
A1377
.
19.
Paturzo
,
L.
,
Basile
,
A.
,
Iulianelli
,
A.
,
Jansen
,
J. C.
,
Gatto
,
I.
, and
Passalacqua
,
E.
, 2005, “
High Temperature Proton Exchange Membrane Fuel Cell Using a Sulfonated Membrane Obtained via H2SO4 Treatment of PEEK-WC
,”
Catal. Today
,
104
, pp.
213
218
.
20.
Li
,
M.
,
Zhang
,
H.
, and
Shao
,
Z.-G.
, 2006, “
Quaternized Poly(Phthalazinone Ether Sulfone Ketone) Membrane Doped with H3PO4 for High-Temperature PEMFC Operation
,”
Electrochem. Solid-State Lett.
,
9
, pp.
A60
A63
.
21.
Salgado
,
J. R. C.
,
Antolini
,
E.
, and
Gonzalez
,
E. R.
, 2004, “
Preparation of Pt-Co/C Electrocatalysts by Reduction with Borohydride in Acid and Alkaline Media: The Effect on the Performance of the Catalyst
,”
J. Power Sources
,
138
, pp.
56
60
.
22.
Antolini
,
E.
,
Salgado
,
J. R. C.
, and
Gonzalez
,
E. R.
, 2005, “
Carbon Supported Pt75M25 (M = Co, Ni) Alloys as Anode and Cathode Electrocatalysts for Direct Methanol Fuel Cells
,”
J. Electroanal. Chem.
,
580
, pp.
145
154
.
23.
Salgado
,
J. R. C.
,
Antolini
,
E.
, and
Gonzalez
,
E. R.
, 2005, “
Carbon Supported Pt–Co Alloys as Methanol-Resistant Oxygen-Reduction Electrocatalysts for Direct Methanol Fuel Cells
,”
Appl. Catal. B
,
57
, pp.
283
290
.
24.
Xiong
,
L.
, and
Manthiram
,
A
, 2005, “
Nanostructured Pt–M/C (M = Fe and Co) Catalysts Prepared by a Microemulsion Method for Oxygen Reduction in Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
,
50
, pp.
2323
2329
.
25.
Raghuveer
,
V.
,
Ferreira
,
P. J.
, and
Manthiram
,
A.
, 2006, “
Comparison of Pd–Co–Au Electrocatalysts Prepared by Conventional Borohydride and Microemulsion Methods for Oxygen Reduction in Fuel Cells
,”
Electrochem. Commun.
,
8
, pp.
807
814
.
26.
Xiong
,
L.
, and
Manthiram
,
A.
, 2005, “
Catalytic Activity of Pt–Ru Alloys Synthesized by a Microemulsion Method in Direct Methanol Fuel Cells
,”
Solid State Ionics
,
176
, pp.
385
392
.
27.
Liu
,
Y.
,
Qiu
,
X.
,
Chen
,
Z.
, and
Zhu
,
W.
, 2002, “
A New Supported Catalyst for Methanol Oxidation Prepared by a Reverse Micelles Method
,”
Electrochem. Commun.
,
4
, pp.
550
553
.
28.
Paulus
,
U. A.
,
Wokaun
,
A.
,
Scherer
,
G. G.
,
Schmidt
,
T. J.
,
Stamenkovic
,
V.
,
Radmilovic
,
V.
,
Markovic
,
N. M.
, and
Ross
,
P. N.
, 2002, “
Oxygen Reduction on Carbon-Supported Pt-Ni and Pt-Co Alloy Catalysts
,”
J. Phys. Chem. B
,
106
, pp.
4181
4191
.
29.
Paulus
,
U. A.
,
Wokaun
,
A.
,
Scherer
,
G. G.
,
Schmidt
,
T. J.
,
Stamenkovic
,
V.
,
Markovic
,
N. M.
, and
Ross
,
P. N.
, 2002, “
Oxygen Reduction on High Surface Area Pt-Based Alloy Catalysts in Comparison to Well Defined Smooth Bulk Alloy Electrodes
,”
Electrochim. Acta
,
47
, pp.
3787
3798
.
30.
Toda
,
T.
,
Igarashi
,
H.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 1999, “
Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co
,”
J. Electrochem. Soc.
,
146
, pp.
3750
3756
.
31.
Toda
,
T.
,
Igarashi
,
H.
, and
Watanabe
,
M.
, 1999, “
Enhancement of the Electrocatalytic O2 Reduction on Pt–Fe Alloys
,”
J. Electroanal. Chem.
,
460
, pp.
258
262
.
32.
Min
,
M.-K.
,
Cho
,
J.
,
Cho
,
K.
, and
Kim
,
H.
, 2000, “
Particle Size and Alloying Effects of Pt-Based Alloy Catalysts for Fuel Cell Applications
,”
Electrochim. Acta
,
45
, pp.
4211
4217
.
33.
Beard
,
B. C.
,
Ross
,
J.
, and
Philip
,
N.
, 1990, “
The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts
,”
J. Electrochem. Soc.
,
137
, pp.
3368
3374
.
34.
Mukerjee
,
S.
, and
Srinivasan
,
S.
, 1993, “
Enhanced Electrocatalysis of Oxygen Reduction on Platinum Alloys in Proton Exchange Membrane Fuel Cell
,”
J. Electroanal. Chem.
,
357
, pp.
201
224
.
35.
Neergat
,
M.
,
Shukla
,
A. K.
, and
Gandhi
,
K. S.
, 2001, “
Platinum-Based Alloys as Oxygen-Reduction Catalysts for Solid–Polymer–Electrolyte Direct Methanol Fuel Cells
,”
J. Appl. Electrochem.
,
31
, pp.
373
378
.
36.
Uribe
,
F. A.
,
Zawodzinski
,
J.
, and
Thomas
,
A.
, 2002, “
A Study of Polymer Electrolyte Fuel Cell Performance at High Voltages. Dependence on Cathode Catalyst Layer Composition and on Voltage Conditioning
,”
Electrochim. Acta
,
47
, pp.
3799
3806
.
37.
Appleby
,
A. J.
, 1970, “
Evolution and Reduction of Oxygen on Oxidized Platinum in 85% Orthophosphoric Acid
,”
Electroanal. Chem.
,
24
, pp.
97
117
.
38.
Appleby
,
A. J.
, 1970, “
Oxygen Reduction on Oxide-Free Platinum in 85% Orthophosphoric Acid: Temperature and Impurity Dependence
,”
J. Electrochem. Soc.
,
117
, pp.
328
335
.
39.
Appleby
,
A. J.
, 1970, “
Oxygen Reduction on Active Platinum in 85% Orthophosphoric Acid
,”
J. Electrochem. Soc.
,
117
, pp.
641
645
.
40.
Vogel
,
W. M.
, and
Lundquist
,
J. T.
, 1970, “
Reduction of Oxygen on Teflon-Bonded Platinum Electrodes
,”
J. Electrochem. Soc.
,
117
, pp.
1512
1516
.
41.
Kunz
,
H. R.
, and
Gruver
,
G. A.
, 1975, “
The Catalytic Activity of Platinum Supported on Carbon for Electrochemical Oxygen Reduction in Phosphoric Acid
,”
J. Electrochem. Soc.
,
122
, pp.
1279
1287
.
42.
Kunz
,
H. R.
, and
Gruver
,
G. A.
, 1978, “
The Effect of Electrolyte Concentration on the Catalytic Activity of Platinum for Electrochemical Oxygen Reduction in Phosphoric Acid
,”
Electrochim. Acta
,
23
, pp.
219
222
.
43.
O’Grady
,
W. E.
,
Taylor
,
E. J.
, and
Srinivasan
,
S.
, 1982, “
Electroreduction of Oxygen on Reduced Platinum in 85% Phosphoric Acid
,”
J. Electroanal. Chem.
,
132
, pp.
137
150
.
44.
Ross
,
J. P. N.
, 1979, “
Structure Sensitivity in Electrocatalytic Properties of Pt
,”
J. Electrochem. Soc.
,
126
, pp.
78
82
.
45.
Huang
,
J. C.
,
Sen
,
R. K.
, and
Yeager
,
E.
, 1979, “
Oxygen Reduction on Platinum in 85% Orthophosphoric Acid
,”
J. Electrochem. Soc.
,
126
, pp.
786
792
.
46.
Liu
,
Z.
,
Wainright
,
J. S.
, and
Savinell
,
R. F.
, 2004, “
High-Temperature Polymer Electrolytes for PEM Fuel Cells: Study of the Oxygen Reduction Reaction (ORR) at a Pt–Polymer Electrolyte Interface
,”
Chem. Eng. Sci.
,
59
, pp.
4833
4838
.
47.
Kim
,
K. T.
,
Hwang
,
J. T.
,
Kim
,
Y. G.
, and
Chung
,
J. S.
, 1993, “
Surface and Catalytic Properties of Iron-Platinum/Carbon Electrocatalysts for Cathodic Oxygen Reduction in PAFC
,”
J. Electrochem. Soc.
,
140
, pp.
31
36
.
48.
Beard
,
B. C.
, and
Ross
,
P. N.
, 1990, “
The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts
,”
J. Electrochem. Soc.
,
137
, pp.
3368
3374
.
49.
Bardi
,
U.
,
Atrei
,
A.
,
Ross
,
P. N.
,
Zanazzi
,
E.
, and
Rovida
,
G.
, 1989, “
Study of the (001) Surface of the Pt-20at%Co Alloy by LEED, LEISS and XPS
,”
Surf. Sci.
,
211–212
, pp.
441
447
.
50.
Wroblowa
,
H. S.
,
Pan
,
Y.-C.
, and
Razumney
,
G.
, 1976, “
Electroreduction of Oxygen: A New Mechanistic Criterion
,”
J. Electroanal. Chem.
,
69
, pp.
195
201
.
51.
Kinoshita
,
K.
, 1992,
Electrochemical Oxygen Technology
,
Wiley-Interscience
,
New York
, p.
19
.
52.
Markovic
,
N. M.
,
Schmidt
,
T. J.
,
Stamenkovic
,
V.
, and
Ross
,
P. N.
, 2001, “
Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review
,”
Fuel Cells
,
1
, pp.
105
116
.
53.
Mukerjee
,
S.
, 1990, “
Particle Size and Structural Effects in Platinum Electrocatalysis
,”
J. Appl. Electrochem.
,
20
, pp.
537
548
.
54.
Klinedinst
,
K.
,
Bett
,
J. A. S.
,
Macdonald
,
J.
, and
Stonehart
,
P.
, 1974, “
Oxygen Solubility and Diffusivity in Hot Concentrated H3PO4
,”
Electroanal. Chem. Interf. Electrochem.
,
57
, pp.
281
289
.
55.
Glass
,
J. T.
,
Cahen
,
G. L.
, and
Stoner
,
G. E.
, 1987, “
The Effect of Metallurgical Variables on the Electrocatalytic Properties of PtCr Alloys
,”
J. Electrochem. Soc.
,
134
, pp.
58
65
.
56.
Glass
,
J. T.
,
Cahen
,
G. I.
, and
Stoner
,
G. E.
, 1989, “
The Effect of Phosphoric Acid Concentration on Electrocatalysis
,”
J. Electrochem. Soc.
,
136
, pp.
656
660
.
57.
Wakabayashi
,
N.
,
Takeichi
,
M.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 2005, “
Temperature Dependence of Oxygen Reduction Activity at Pt-Fe, Pt-Co, and Pt-Ni Alloy Electrodes
,”
J. Phys. Chem. B
,
109
, pp.
5836
5841
.
58.
Murthi
,
V. S.
,
Urian
,
R. C.
, and
Mukerjee
,
S.
, 2004, “
Oxygen Reduction Kinetics in Low and Medium Temperature Acid Environment: Correlation of Water Activation and Surface Properties in Supported Pt and Pt Alloy Electrocatalysts
,”
J. Phys. Chem. B
,
108
, pp.
11011
11023
.
59.
Escudero
,
M. J.
,
Hontanon
,
E.
,
Schwartz
,
S.
,
Boutonnet
,
M.
, and
Daza
,
L.
, 2002, “
Development and Performance Characterisation of New Electrocatalysts for PEMFC
,”
J. Power Sources
,
106
, pp.
206
214
.
You do not currently have access to this content.