Micro-tubular solid oxide fuel cells (MT-SOFCs) are a much smaller version of larger tubular SOFCs. They are operational within seconds and allow a higher power density per volume than the larger version. Hence they are a potential technology for automotive, auxiliary and small scale power supply devices. In this study a commercially available computational fluid dynamic (CFD) software program was used to predict a MT-SOFCs performance when located inside a high temperature wind tunnel experimental apparatus. In Part I, experimentally measured temperature profiles were recorded via thermo-graphic analyses and I/V curves. These measurements were used in this study to establish the predictability and validity of the CFD code and furthermore understand the MT-SOFC attributes measured in Part I. A maximum 4% I/V curve deviation and 6 K temperature deviation between the experimentally measured and model predicted results was observed. Thus, the model predicted the MT-SOFCs performance in the experimental environment very accurately. A very critical observation was the current density and temperature profile across the MT-SOFC that was strongly dependent on the distance from the hydrogen/fuel inlet. Not only was the model validated but also a grid and quantitative solution analysis is explicitly shown and discussed. This resulted in the optimum grid density and the indication that a normally undesirable high grid aspect ratio is acceptable for similar MT-SOFC modeling. These initial simulations and grid/solution analysis are the prerequisite before performing a further study including multiple MT-SOFCs within a stack using different fuels is also envisaged.

References

References
1.
Suzuki
,
T.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2008, “
Fabrication and Characterization of Micro Tubular Sofcs for Advanced Ceramic Reactors
,”
J. Alloys Compd.
,
451
(
1–2
), pp.
632
635
.
2.
Misono
,
T.
,
Murata
,
K.
,
Yin
,
J.
, and
Fukui
,
T.
, 2007, “
Morphology Control of Ni-Gdc Cermet Anode for Lower Temperature Sofc
,”
ECS Trans.
,
7
(
1
), pp.
1355
1361
.
3.
Yamaguchi
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
,
Awano
,
M.
, and
Shimizu
,
S.
, 2010, “
Novel Electrode-Supported Honeycomb Solid Oxide Fuel Cell: Design and Fabrication
,”
J. Fuel Cell Sci. Technol.
,
7
(
4
), pp.
041001
-
4
.
4.
Othman
,
M. H. D.
,
Wu
,
Z.
,
Droushiotis
,
N.
,
Kelsall
,
G.
, and
Li
,
K.
, 2010, “
Morphological Studies of Macrostructure of Ni-Cgo Anode Hollow Fibres for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Membr. Sci.
,
360
(
1–2
), pp.
410
417
.
5.
Sun
,
C.
,
Hui
,
R.
, and
Roller
,
J.
, 2010, “
Cathode Materials for Solid Oxide Fuel Cells: A Review
,”
J. Solid State Electrochem.
,
14
(
7
), pp.
1125
1144
.
6.
Liu
,
B.
and
Zhang
,
Y.
, 2008, “
Status and Prospects of Intermediate Temperature Solid Oxide Fuel Cells
,”
Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material
,
15
(
1
), pp.
84
90
.
7.
Liu
,
M.
,
Dong
,
D.
,
Peng
,
R.
,
Gao
,
J.
,
Diwu
,
J.
,
Liu
,
X.
, and
Meng
,
G.
, 2008, “
Ysz-Based Sofc With Modified Electrode/Electrolyte Interfaces for Operating at Temperature Lower Than 650 °C
,”
J. Power Sources
,
180
(
1
), pp.
215
220
.
8.
Sleiti
,
A. K.
, 2010, “
Performance of Tubular Solid Oxide Fuel Cell at Reduced Temperature and Cathode Porosity
,”
J. Power Sources
,
195
(
17
), pp.
5719
5725
.
9.
Sleiti
,
A. K.
, 2008, “
Effect of Reduced Temperature and Cathode Porosity on the Performance of Tubular Solid Oxide Fuel Cell
,” ASME Paper No. HT2008-56447.
Proceedings of ASME 2008 Summer Heat Transfer Conference
, HT2008-56447, Jacksonville, Florida, August 10–14, 2008.
10.
Calise
,
F.
,
Dentice D’accadia
,
M.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Simulation and Exergy Analysis of a Hybrid Solid Oxide Fuel Cell (Sofc)-Gas Turbine System
,”
Energy
,
31
(
15
), pp.
3278
3299
.
11.
Cocco
,
D.
and
Tola
,
V.
, 2009, “
Externally Reformed Solid Oxide Fuel Cell-Micro-Gas Turbine (Sofc-Mgt) Hybrid Systems Fueled by Methanol and Di-Methyl-Ether (Dme)
,”
Energy
,
34
(
12
), pp.
2124
2130
.
12.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2007, “
Modeling and Control of a Sofc-Gt-Based Autonomous Power System
,”
Energy
,
32
(
4
), pp.
406
417
.
13.
Calise
,
F.
,
Dentice D’ Accadia
,
M.
,
Vanoli
,
L.
, and
Von Spakovsky
,
M. R.
, 2007, “
Full Load Synthesis/Design Optimization of a Hybrid Sofc-Gt Power Plant
,”
Energy
,
32
(
4
), pp.
446
458
.
14.
Komatsu
,
Y.
,
Kimijima
,
S.
, and
Szmyd
,
J. S.
, (2010), “
Performance Analysis for the Part-Load Operation of a Solid Oxide Fuel Cell-Micro Gas Turbine Hybrid System
,”
Energy
,
35
(
2
), pp.
982
988
.
15.
Burer
,
M.
,
Tanaka
,
K.
,
Favrat
,
D.
, and
Yamada
,
K.
, 2003, “
Multi-Criteria Optimization of a District Cogeneration Plant Integrating a Solid Oxide Fuel Cell-Gas Turbine Combined Cycle, Heat Pumps and Chillers
,”
Energy
,
28
(
6
), pp.
497
518
.
16.
Santin
,
M.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A.
, (2010), “
Thermoeconomic Analysis of Sofc-Gt Hybrid Systems Fed by Liquid Fuels
,”
Energy
,
35
(
2
), pp.
1077
1083
.
17.
Bujalski
,
W.
,
Dikwal
,
C. M.
, and
Kendall
,
K.
, 2007, “
Cycling of Three Solid Oxide Fuel Cell Types
,”
J. Power Sources
,
171
(
1
), pp.
96
100
.
18.
Appleby
,
A. J.
, (1996), “
Fuel Cell Technology: Status and Future Prospects
,”
Energy
,
21
(
7–8
), pp.
521
653
.
19.
Gieleten
,
D.
and
Simbolotti
,
G.
, 2005, “
Prospects for Hydrogen and Fuel Cells
,” Technical Report No. Report No. ISBN: 9789264109575, International Energy Agency, Paris, France.
20.
Penner
,
S. S.
,
Appleby
,
A. J.
,
Baker
,
B. S.
,
Bates
,
J. L.
,
Buss
,
L. B.
,
Dollard
,
W. J.
,
Fartis
,
P. J.
,
Gillis
,
E. A.
,
Gunsher
,
J. A.
,
Khandkar
,
A.
,
Krumpelt
,
M.
,
O’Sullivan
,
J. B.
,
Runte
,
G.
,
Savinell
,
R. F.
,
Selman
,
J. R.
,
Shores
,
D. A.
, and
Tarman
,
P.
, 1995, “
Commercialization of Fuel Cells
,”
Energy
,
20
(
5
), pp.
331
470
.
21.
Lutsey
,
N.
,
Brodrick
,
C.-J.
, and
Lipman
,
T.
, 2007, “
Analysis of Potential Fuel Consumption and Emissions Reductions from Fuel Cell Auxiliary Power Units (Apus) in Long-Haul Trucks
,”
Energy
,
32
(
12
), pp.
2428
2438
.
22.
Wakui
,
T.
,
Yokoyama
,
R.
, and
Shimizu
,
K.-I.
, (2010), “
Suitable Operational Strategy for Power Interchange Operation Using Multiple Residential Sofc (Solid Oxide Fuel Cell) Cogeneration Systems
,”
Energy
,
35
(
2
), pp.
740
750
.
23.
Ghosh
,
S.
and
De
,
S.
, (2006), “
Energy Analysis of a Cogeneration Plant Using Coal Gasification and Solid Oxide Fuel Cell
,”
Energy
,
31
(
2–3
), pp.
345
363
.
24.
Lawlor
,
V.
,
Griesser
,
S.
,
Buchinger
,
G.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Meissner
,
D.
, 2009, “
Review of the Micro-Tubular Solid Oxide Fuel Cell: Part I. Stack Design Issues and Research Activities
,”
J. Power Sources
,
193
(
2
), pp.
387
399
.
25.
Kendall
,
K.
, 2009, “
Progress in Microtubular Solid Oxide Fuel Cells
,” International Journal of Applied Ceramic Technology, (7–1), pp.
1
9
.
26.
Lawlor
,
V.
,
Zauner
,
G.
,
Mariani
,
A.
,
Hochenauer
,
C.
,
Griesser
,
S.
,
Carton
,
J.
,
Kuehn
,
S.
,
Klein
,
K.
,
Meissner
,
D.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Buchinger
,
G.
, 2009, “
A Study to Investigate Methods to Measure the Temperature of a Mt-Sofc in a High Temperature Wind Tunnel
,”
Proceedings of 3rd European Fuel Cell Technology & Applications “Piero Lunghi Conference,”
EFC09-17043, Rome Italy, pp.
76
77
.
27.
Lawlor
,
V.
,
Zauner
,
G.
,
Hochenauer
,
C.
,
Mariani
,
A.
,
Griesser
,
S.
,
Carton
,
J. G.
,
Klein
,
K.
,
Kuehn
,
S.
,
Olabi
,
A. G.
,
Cordiner
,
S.
,
Meissner
,
D.
, and
Buchinger
,
G.
, 2010, “
The Use of a High Temperature Wind Tunnel for Mt-Sofc Testing—Part I: Detailed Experimental Temperature Measurement of an Mt-Sofc Using an Avant-Garde High Temperature Wind Tunnel and Various Measurement Techniques
,”
J. Fuel Cell Sci. Technol.
,
7
(
6
), pp.
061016
7
.
28.
Lawlor
,
V.
,
Meissner
,
D.
,
Hochenauer
,
C.
,
Griesser
,
S.
,
Cordiner
,
S.
,
Mariani
,
A.
,
Zauner
,
G.
,
Olabi
,
A.
, and
Buchinger
,
G.
, 2009, “
Micro-Tubular Sofcs to Measure the Effects of Cross Flow on Mass Transfer Rates Around the Perimeter of a Cylindrical Electrode
,”
ECS Trans.
,
25
(
2
), pp.
1283
1293
.
29.
Cordiner
,
S.
,
Mariani
,
A.
, and
Mulone
,
V.
, (2008), “
An Integrated CFD-Approach to Design Micro-Tubular Solid Oxide Fuel Cells
Proccedings of Thermal Issues in Emerging Technologies
, ThETA 2,
Cairo, Egypt
, Dec. 17–20, pp.
85
96
.
30.
Cordiner
,
S.
,
Mariani
,
A.
, and
Mulone
,
V.
, 2010, “
Cfd-Based Design of Microtubular Solid Oxide Fuel Cells
,”
J. Heat Transfer
,
132
(
6
), pp.
062801
-
15
.
31.
Sciacovelli
,
A.
and
Verda
,
V.
, 2009, “
Entropy Generation Analysis in a Monolithic-Type Solid Oxide Fuel Cell (Sofc)
,”
Energy
,
34
(
7
), pp.
850
865
.
32.
Lockett
,
M.
,
Simmons
,
M. J. H.
, and
Kendall
,
K.
, 2004, “
Cfd to Predict Temperature Profile for Scale up of Micro-Tubular Sofc Stacks
,”
J. Power Sources
,
131
(
1–2
), pp.
243
246
.
33.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2008, “
Computational Thermal-Fluid Analysis of a Microtubular Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
55
(
11
), pp.
B1117
B1127
.
34.
Serincan
,
M. F.
,
Mcphee
,
W. A. G.
, and
Sammes
,
N. M.
, 2007, “
Mass Transport Effects of Current Collector Coated on the Entire Cathode Surface of a Micro Tubular Solid Oxide Fuel Cell.
,”
J. Electrochem. Soc.
,
3
(
33
), pp.
35
43
.
35.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2009, “
Effects of Operating Conditions on the Performance of a Micro-Tubular Solid Oxide Fuel Cell (Sofc)
,”
J. Power Sources
,
192
(
2
), pp.
414
422
.
36.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2009, “
A Transient Analysis of a Micro-Tubular Solid Oxide Fuel Cell (Sofc)
,”
J. Power Sources
,
192
(
2
), pp.
864
872
.
37.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2010, “
Thermal Stresses in an Operating Micro-Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
,
195
(
15
), pp.
4905
4914
.
38.
Serincan
,
M. F.
,
Smirnova
,
A.
, and
Sammes
,
N. M.
, 2007, “
Modeling and Analysis of a Micro-Tubular Solid Oxide Fuel Cell Operating at Intermediate Temperatures
,” eds., Japan, 7-1, pp.
1955
1965
.
39.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar Sofc Stacks
,”
J. Power Sources
,
113
(
1
), pp.
109
114
.
40.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2010, “
Simulation Study for the Optimization of Microtubular Solid Oxide Fuel Cell Bundles
,”
J. Fuel Cell Sci. Technol.
,
7
(
2
), pp.
021015
-
4
.
41.
Daan
,
C.
and
Mojie
,
C.
, 2009, “
Numerical Analysis of Thermal and Electrochemical Phenomena for Anode Supported Microtubular Sofc
,”
AIChE Journal
,
55
(
3
), pp.
771
782
.
42.
Lawlor
,
V.
,
Hochenauer
,
C.
,
Buchinger
,
G.
,
Griesser
,
S.
,
Olabi
,
A.
, and
Meissner
,
D.
, 2008, “
Design of a Microtubular SOFC Reactor With CFD and Validations
,”
Proceedings of the 2nd European Fuel Cell Technology & Applications “Piero Lunghi Conference” EFC2007-39060
,
Rome, Italy
, pp.
168
170
.
43.
Lawlor
,
V.
,
Buchinger
,
G.
,
Hochenauer
,
C.
,
Cordinor
,
S.
,
Griesser
,
S.
,
Olabi
,
A.
, and
Meissner
,
D.
, 2007, “
Numerical Simulation and Experimental Validation to Design of Optimised Micro-Tubular SOFC Reactor
,”
Proceedings of Tagungsband 2. Forschungsforum der österreichischen Fachhochschulen Upper Austria University of Applied Sciences
, Wels. Austria, pp.
327
334
.
44.
Chouikh
,
R.
,
Guizani
,
A.
,
El Cafsi
,
A.
,
Maalej
,
M.
, and
Belghith
,
A.
, 2000, “
Experimental Study of the Natural Convection Flow Around an Array of Heated Horizontal Cylinders
,”
Renewable Energy
,
21
(
1
), pp.
65
78
.
45.
Chouikh
,
R.
,
Guizani
,
A.
,
Maâlej
,
M.
, and
Belghith
,
A.
, 1999, “
Numerical Study of the Laminar Natural Convection Flow Around an Array of Two Horizontal Isothermal Cylinders
,”
Int. Commun. Heat Mass Transfer
,
26
(
3
), pp.
329
338
.
46.
Suzuki
,
T.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Fabrication of Micro-Tubular Sofc Stack Using Ceramic Manifold
,”
Proceedings of the 10th International Symposium on Solid Oxide Fuel Cells (SOFC-X)
, Japan, Vol. 7-1, pp.
477
482
.
47.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Fabrication and Characterization of Components for Cube Shaped Micro Tubular Sofc Bundle
,”
J. Power Sources
,
163
(
2
), pp.
731
736
.
48.
Doraswami
,
U.
,
Droushiotis
,
N. D.
, and
Kelsall
,
G.
, 2009, “
Modelling Potential, Current and Gas Velocity Distributions in Micro-Tubular Hollow Fiber Sofc Stacks
,”
ECS Trans.
,
25
(
2
), pp.
1241
1251
.
51.
Christman
,
K. L.
and
Jensen
,
M. K.
, (2010), “
Solid Oxide Fuel Cell Performance with Cross-Flow Roughness
,”
J. Fuel Cell Sci. Technol.
,
8
(
2
), pp.
024501
-
5
.
52.
Prinkey
,
M.
,
Gemmen
,
R.
, and
Reogers
,
W.
, 2001, “
Application of a New Cfd Analysis Tool for Sofc Technology
,” eds.,
4
, pp.
291
300
.
54.
Eg&G Technical Services, I.
, 2004,
Fuel Cell Handbook
,
7th ed.
,
U.S. DOE
.
You do not currently have access to this content.