A 3D, single phase steady-state model has been developed for liquid feed direct methanol fuel cell. The model is implemented into the commercial computational fluid dynamics (CFD) software package FLUENT® v6.2, with its user-defined functions (UDFs). The continuity, momentum, and species conservation equations are coupled with electrochemical kinetics in the anode and cathode channel and MEA. For electro chemical kinetics, the Tafel equation is used at both the anode and cathode sides. Results are validated against DMFC experimental data with reasonable agreement and used to study the effects of cell temperature, channel depth, and channel width on polarization curve, power density and crossover rate. The results show that the increasing operational temperature, the limiting current density and peak of power density increase and subsequently crossover increases too. It is also shown that the increasing of channel width is a beneficial way for improving cell performance at a methanol concentration below 1 M.

References

References
1.
Karvountzi
,
G. C.
, and
Duby
,
P. F.
, 2008, “
Comparison of a Multi-Megawatt High Temperature Fuel Cell System With Reciprocating Engines and Aero-Derivative Gas Turbines
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2008: Energy Systems: Analysis, Thermodynamics and Sustainability: Sustainable Products and Processes
,
Boston, Massachusetts
, PVP-Vol.
8
, pp.
741
749
.
2.
Bhargava
,
R. K.
,
Bianchi
,
M.
,
Campanari
,
S.
,
Pascale
,
A. D.
,
Montenegro
,
G. D.
, and
Peretto
,
A.
, 2008, “
High Efficiency Gas Turbine Based Power Cycles. A Study of the Most Promising Solutions: Part 1: A Review of the Technology
,”
Proceedings of the ASME Turbo Expo 2008: Education Industrial Cogeneration Marine Oil and Gas Applications, Power for Land, Sea and Air (GT2008)
,
Berlin, Germany
, Vol.
7
, pp.
305
314
.
3.
Tanaka
,
K.
,
Inoue
,
K.
,
Kitajima
,
J.
,
Kazari
,
M.
,
Nitta
,
S.
,
Tsujikawa
,
Y.
, and
Kaneko
,
K.
, 2007, “
The Development of 50 kW Output Power Atmospheric Pressure Turbine (APT)
,”
ASME Turbo Expo 2007-Power for Land, Sea, and Air: Montreal, Canada - May 14–17, 2007: Cycle Innovations; Education; Environmental and Regulatory Affairs; (GT2007), Microturbines and Small Turbomachinery
,
Montreal
,
Canada
, Vol.
3
, pp.
741
748
.
4.
Bonta
,
P. V. S.
,
O’Neal
,
C. B.
,
Muthusami
,
S.
, 2005, “
Micro Fuel Cell Technologies, Advancements, and Challenges
,”
ASME, 3rd International Conference on Fuel Cell Science, Engineering and Technology
,
Ypsilanti
,
Michigan
, pp.
673
682
.
5.
Draper
,
R.
,
Giuseppe
,
G. D.
, 2008, “
High Power Density Solid Oxide Fuel Cells for Auxiliary Power Unit Applications
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
3
),
035001
.
6.
Palmer
,
D. J.
Sachs
,
G. D.
,
Sembler
,
W. J.
, 2009, “
A Solar-Hydrogen Fuel-Cell Home and Research Platform
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
3
),
p.
034504
.
7.
Dohle
,
H.
,
Schmitz
,
H.
,
Bewer
,
T.
,
Mergel
,
J.
, and
Stolten
,
D.
, 2002, “
Development of a Compact 500 W Class Direct Methanol Fuel Cell Stack
,”
J. Power Sources
,
106
, pp.
313
322
.
8.
Burstein
,
G. T.
,
Barnett
,
C. J.
,
Kucernak
,
A. R.
,
Williams
,
K. R.
, 1997, “
Aspects of the Anodic Oxidation of Methanol
,”
J. Catalysis Today
,
38
(
4
), pp.
425
437
.
9.
Hamnett
,
A.
, 1997, “
Mechanism and Electro Catalysis in the Direct Methanol Fuel Cell
,”
J. Catalysis Today
,
38
, pp.
445
457
.
10.
Wang
,
J. T. S.
,
Wasmus
,
R.
, and
Savinell
,
F.
, 1996, “
Real-Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
143
(
4
), pp.
1233
1239
.
11.
Hikita
,
S.
,
Yamane
,
K.
, and
Nakajima
,
Y.
, 2000, “
Measurement of Methanol Crossover in Direct Methanol Fuel Cell
,”
JSAE Rev.
,
22
(
2
), pp.
151
156
.
12.
Baxter
,
S. F.
Battaglia
,
V. S.
, and
White
,
R. E.
, 1999, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
437
447
.
13.
Scott
,
K.
,
Argyropoulos
,
P.
, and
Taama
,
W. M.
, 2000, “
Modeling Pressure Distribution and Anode/Cathode Streams Vapor–Liquid Equilibrium Composition in Liquid Feed Direct Methanol Fuel Cells
,”
J. Chem. Eng.
,
78
(
1
), pp.
29
41
.
14.
Scott
,
K.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K. A.
, 1999, “
A Model for the Liquid Feed Direct Methanol Fuel Cell
,”
J. Electroanal. Chem.
,
477
(
2
), pp.
97
110
.
15.
Kulikovsky
,
A. A.
, 2000, “
Two-Dimensional Numerical Modeling of a Direct Methanol Fuel Cell
,”
J. Appl. Electrochem.
,
30
(
9
), pp.
1005
1014
.
16.
Divisek
,
J.
,
Fuhrman
,
J.
,
Gartner
,
K.
, and
Jung
,
R.
, 2003, “
Performance Modeling of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
150
(
6
), pp.
A811
A825
.
17.
Wang
,
Z. H.
, and
Wang
,
C. Y.
, 2003, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
150
(
4
), pp.
508
524
.
18.
Ge
,
J.
, and
Liu
,
H.
, 2006, “
A Three-Dimensional Mathematical Model for Liquid-Fed Direct Methanol Fuel Cells
.”
J. Power Sources
,
160
(
1
), pp.
413
421
.
19.
Ge
,
J.
, and
Liu
,
H.
, 2007, “
A Three-Dimensional Two-Phase Flow Model for a Liquid-Fed Direct Methanol Fuel Cell
,”
J. Power Sources
,
163
(
2
), pp.
907
915
.
20.
Garrard
,
A.
,
Beck
,
S.
, and
Styring
,
P.
, 2004, “
Numerical Model of a Single Phase, Regenerative Fuel Cell
,”
Proceedings of the 2nd International Fuel Cell Science, Engineering and Technology Conference
,
Rochester
,
New York
, pp.
79
84
.
21.
Li
,
S.
,
Cao
,
J.
, and
Becker
,
U.
, 2005, “
The Modeling PEMFC with FLUENT: Numerical Performance and Validations With Experimental Data
,”
Proceedings of the 3rd International Conference on Fuel Cell Science, Engineering and Technology, 2005: Presented at the 3rd International Conference on May 23–25, 2005
,
Ypsilanti
,
Michigan
, pp.
103
110
.
22.
Siegel
,
C.
, 2008, “
Review of Computational Heat and Mass Transfer Modeling Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Energy
,
33
(
9
), pp.
1331
1352
.
23.
Marcos
,
V. A.
, 2007, “
Single-Phase Model for Liquid-Feed DMFCs With Non-Tafel Kinetics
,”
J. Power Sources
,
171
(
2
), pp.
763
777
.
24.
Ren
,
X.
,
Springer
,
T. E.
,
Zawodzingski
,
T. A.
, and
Gottesfeld
,
S.
, 2000, “
Methanol Transport Through Nafion Membranes Electro-Osmotic Drag Effects on Potential Step Measurements
,”
J. Electrochem. Soc.
,
147
(
2
), pp.
466
474
.
25.
Xu
,
C. Y.
,
He
,
L.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Yea
,
Q.
, 2006, “
Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
153
(
7
), pp.
A1358
A1364
.
26.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4595
4611
.
27.
Yang
,
W. W.
,
Zhao
,
T. S.
, and
Xu
,
C.
, 2007, “
Three-Dimensional Two-Phase Mass Transport Model for Direct Methanol Fuel Cells
,”
J. Electrochimica Acta
,
53
(
2
), pp.
853
862
.
28.
He
,
Y. L.
,
Li
,
X. L.
,
Miao
,
Z.
, and
Liu
,
Y. W.
, 2008, “
Two-Phase Modeling of Mass Transfer Characteristics of a Direct Methanol Fuel Cell
,”
J. Appl. Therm. Eng.
,
29
(
10
), pp.
1998
2008
.
29.
Shukla
,
A. K.
,
Jackson
,
C. L.
,
Scott
,
K.
, and
Murgia
,
G. A.
, 2002, “
Solid-Polymer Electrolyte Direct Methanol Fuel Cell With a Mixed Reactant and Air Anode
,”
J. Power Sources
,
111
(
1
), pp.
43
51
.
30.
Ren
,
X. M.
,
Henderson
,
W.
, and
Gottesfeld
,
S.
, 1997, “
Electro-Osmotic Drag of Water in Ionomeric Membranes
,”
J. Electrochem. Soc.
,
144
(
9
), pp.
267
270
.
31.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
, 1997, “
Performance and Modeling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
659
(
1–2
), pp.
159
171
.
32.
Zerbinati
,
O.
,
Mardan
,
A.
, and
Richter
,
M. M.
, 2002, “
A Direct Methanol Fuel Cell
,”
J. Chem. Educ.
,
79
(
7
), pp.
829
.
33.
Rice
,
J.
, and
Faghri
,
A.
, 2006, “
Transient, Multi-Phase and Multi-Component Model of a New Passive DMFC
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4804
4820
.
34.
Nield
,
D. A.
, and
Bijan
,
A.
, 2006,
Convection in Porous Media
,
3rd ed.
,
Springer
,
New York
, Chap. 3.
35.
Zhao
,
T. S.
,
Xu
,
C.
,
Chen
,
R.
, and
Yang
,
W. W.
, 2009, “
Mass Transport Phenomena in Direct Methanol Fuel Cells
,”
J. Prog. Energy Combust. Sci.
,
35
(
3
), pp.
275
292
.
36.
Jeng
,
K. T.
, and
Chen
,
C. W.
, 2002, “
Modeling and Simulation of a Direct Methanol Fuel Cell Anode
,”
J. Power Sources
,
112
(
2
), pp.
367
375
.
37.
Yin
,
K. M.
, 2007, “
An Algebraic Model on the Performance of a Direct Methanol Fuel Cell with Consideration of Methanol Crossover
,”
J. Power Sources
,
167
(
2
), pp.
420
429
.
38.
Scott
,
K.
, and
Argyropoulos
,
P. A.
, 2004, “
One Dimensional Model of a Methanol Fuel Cell Anode
,”
J. Power Sources
,
137
(
2
), pp.
228
238
.
39.
Scott
,
K.
,
Taama
,
W. M.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K.
, 1999, “
The Impact of Mass Transfer and Methanol Crossover on the Direct Methanol Fuel Cell
,”
J. Power Source
,
83
, pp.
204
216
.
40.
Ge
,
J.
, and
Li
,
H.
, 2005, “
Experimental Studies of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
142
(
1–2
), pp.
56
69
.
41.
Xu
,
C.
,
He
,
Y. L.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Ye
,
Q.
, 2006, “
Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
153
(
7
), pp.
1358
1364
.
42.
Baldauf
,
M.
, and
Preidel
,
W.
, 1999, “
Status of the Development of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
84
(
2
), pp.
161
166
.
You do not currently have access to this content.