A study of the effect of electrode parameters on the mass transport characteristics of cathodes used for oxygen reduction in a phosphoric acid loaded polybenzimidazole membrane fuel cell is reported. Mass transport characteristics were determined using chrono-amperometry to measure the dynamic response of electrodes. Mass transfer behavior was analyzed using equations for diffusion in finite lengths of thin film electrolytes covering the catalyst surface area. Electrode structure parameters were measured using SEM images of the cross section of the membrane electrode assemblies. Electrode mass transfer parameters were determined for cathodes using different catalyst Pt loadings and using cathodes which were heat treated to modify micro-structure and hydrophobicity. Analysis of data showed that the dynamic current response was not controlled simply by mass transport by diffusion of oxygen through an electrolyte film covering the catalysts surface, but by an interfacial mass transport at the gas (vapor)/electrolyte film interface. Electrodes which exhibited the better oxygen mass transfer and solubility characteristics also produced better cell voltage versus current density performance in fuel cell studies.

References

References
1.
Jones
,
D. J.
and
J.
Roziere
, 2001, “
Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications
,”
J. Membr. Sci.
,
185
, pp.
41
58
.
2.
Savadogo
,
O
, 2004, “
Emerging Membranes for Electrochemical Systems - Part II. High Temperature Composite Membranes for Polymer Electrolyte Fuel Cell (PEFC) Applications
,”
J. Power Sources
,
127
, pp.
135
161
.
3.
Wang
,
J. T.
,
Savinell
,
R. F.
,
Wainright
,
J.
,
Litt
,
M.
, and
Yu
,
H.
, 1996, “
A H-2/O-2 Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte
,”
Electrochim. Acta
,
41
, pp.
193
197
.
4.
Wainright
,
J. S.
,
Wang
J. T
,
Weng
,
D.
,
Savinell
,
R. F.
, and
Litt
,
M.
, 1995, “
Acid-Doped Polybenzimidazoles – a New Polymer Electrolyte
,”
J. Electrochem. Soc.
,
142
, pp.
L121
L123
.
5.
Li
,
Q. F.
,
He
,
R. H.
,
Gao
,
J. A.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
, 2003, “
The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200 Degrees C
,”
J. Electrochem. Soc.
,
150
, pp.
A1599
A1605
.
6.
Lobato
,
J.
,
Rodrigo
,
M. A.
,
Linares
,
J. J.
, and
Scott
,
K.
, 2006, “
Effect of the Catalytic Ink Preparation Method on the Performance of High Temperature Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
157
, pp.
284
292
.
7.
Li
,
C. P. Q.
Jensen
,
J. O.
,
Heb
,
R.
,
Cleemann
,
L. N.
,
Nilsson
,
M. S.
,
Bjerrum
,
N. J.
,
Zeng
,
Q.
, 2007, “
Preparation and Operation of Gas Diffusion Electrodes for High-Temperature Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
172
, pp.
278
286
.
8.
Modestov
,
A. D.
,
Tarasevich
,
M. R.
, and
Filimonov
,
V. Y
, 2006, “
Influence of Catalyst Layer Binder on Catalyst Utilization and Performance of Fuel Cell with Polybenzimidazole-H3PO4 Membrane
,”
J. Electrochem Soc.
,
156
, pp.
B650
B656
.
9.
Oono
,
Y.
,
Sounai
,
A.
, and
Hori
,
M.
, 2009, “
Influence of the Phosphoric Acid-Doping Level in a Polybenzimidazole Membrane on the Cell Performance of High-Temperature Proton Exchange Membrane Fuel Cells
J Power Sources
,
189
, pp.
943
949
.
10.
Mamlouk
,
M.
and
Scott
,
K.
, 2010, “
Phosphoric Acid-Doped Electrodes for a PBI Polymer Membrane Fuel Cell
,”
International Journal of Energy Research
,
Wiley
,
New York
.
11.
Lambda-Americas-Inc.
, “
App Note 500 – Calculating Capacitor Charge Time
,” 2008, http://www.lambda-hp.com/pdfs/application%20notes/93008500rC.pdf.
12.
Liu
,
Z. Y.
,
Wainright
,
J. S.
,
Litt
,
M. H.
, and
Savinell
,
R. F.
, 2006, “
Study of the Oxygen Reduction Reaction (ORR) at Pt Interfaced with Phosphoric Acid Doped Polybenzimidazole at Elevated Temperature and Low Relative Humidity
,”
Electrochim. Acta
,
51
(
19
), pp.
3914
3923
.
13.
Scharifker
,
B. R.
,
Zelenay
,
P.
, and
Bockris
,
J. O. M.
, 1987, “
The Kinetics of Oxygen Reduction in Molten Phosphoric Acid at High Temperatures
,”
J. Electrochem. Soc.
,
134
, pp.
2714
2725
.
14.
Parthasarathy
,
A.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface-A Microelectrode Investigation
,”
J. Electrochem. Soc.
,
139
, pp.
2530
2537
.
15.
Klinedinst
,
K.
,
Bett
,
J. A. S.
,
MacDonald
,
J.
, and
Stonehart
,
P.
, 1974, “
Oxygen Solubility and Diffusivity in Hot Concentrated H3PO4
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
57
, pp.
281
289
.
16.
Zelenay
,
O. P.
,
Scharifker
,
B. R.
,
Bockris
,
J. O. M.
, and
Gervasio
,
D.
, 1986, “
A Comparison of the Properties of CF3SO3H and H3PO4 in Relation to Fuel Cells
,”
J. Electrochem. Soc.
,
133
, pp.
2262
2267
.
17.
Pajkossy
,
T.
and
Nyikos
,
L.
, 1988, “
Comments on J. C. Wang’s Paper on the Impedance of a Fractal Electrolyte–Electrode Interface
,”
Electrochim. Acta
,
33
, pp.
713
715
.
18.
Pajkossy
,
T.
and
Nyikos
,
L.
, 1989, “
Diffusion to Fractal Surfaces–II. Verification of Theory
,”
Electrochim. Acta
,
34
, pp.
171
179
.
19.
Pajkossy
,
T.
and
Nyikos
,
L.
, 1989, “
Diffusion to Fractal Surfaces–III. Linear Sweep and Cyclic Voltammograms
,”
Electrochim. Acta
,
34
, pp.
181
186
.
20.
Pajkossy
,
T.
, 1991, “
Electrochemistry at Fractal Surfaces
,”
J. Electroanal. Chem.
,
300
, pp.
1
11
.
21.
Mamlouk
,
M.
, 2008, “
Investigation of High Temperature Polymer Electrolyte Membrane Fuel Cells
”, Ph.D thesis, Newcastle University, Newcastle, United Kingdom.
22.
Crank
,
J.
, 1979,
The Mathematics of Diffusion
,
2nd ed.
,
Clarendon
,
Oxford
.
23.
Scott
,
K.
and
Mamlouk
,
M.
, 2011, “
A Study of Oxygen Reduction on Carbon Supported Platinum Electrodes at a PBI/Phosphoric acid Interface
,”
Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy
,
225
(2), pp.
161
174
.
24.
Wen
,
C. J.
,
Boukamp
,
B. A.
,
Huggins
,
R. A.
, and
Weppner
,
W.
, 1979, “
Thermodynamic and Mass Transport Properties of “LiAl
,”
J. Electrochem. Soc.
,
126
, pp.
2258
2266
.
25.
Tada
,
T.
, 2003,
Handbook of Fuel Cells: Fundamentals, Technology and Applications. Part 3: Polymer Electrolyte Membrane Fuel Cells and Systems, High-dispersion Catalysts Including Novel Carbon Supports
, Vol.
3
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
,
Chichester, UK
.
26.
Gasteiger
,
H. A.
and
M. F.
Mathias
, 2002, “
Fundamental Research and Development Challenges in Polymer Electrolyte Fuel Cell Technology
Proceedings of ECS Meeting
,
Salt Lake City, Utah
, October.
27.
Bockris
,
J. O. M.
,
Conway
,
B. E.
,
White
,
R. E.
,
Vayenas
,
C. G.
, and
Gamboa-Aldeco
,
M.
, 1954, “
Modern Aspects of Electrochemistry
,”
J. O. M.
Bockris
and
B. E.
Conway
, eds.,
Butterworths
,
London
, Vol.
32
.
28.
Gileadi
,
E.
, 1993,
Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists
Wiley
,
New York
.
29.
Kinoshita
,
K.
, 1992,
Electrochemical Oxygen Technology
Wiley
,
New York
.
30.
Slattery
,
J. C.
and
Bird
,
R. B.
, 1958, “
Calculation of the Diffusion Coefficient of Dilute Gases and of the Self-diffusion Coefficient of Dense Gases
,”
AIChE J.
,
4
, pp.
137
142
.
31.
Majsztrik
,
P. W.
,
Satterfield
,
M. B.
,
Bocarsly
,
A. B.
, and
Benziger
,
J. B.
, 2008, “
Non-Fickian Water Vapor Sorption Dynamics by Nafion Membranes
,”
J. Phys. Chem. B
112
(
12
), pp.
3693
3704
.
32.
Majsztrik
,
P. W.
, 2007, “
Water Sorption, Desorption and Transport in Nafion Membranes
,”
J. Membr. Sci.
,
301
(
1-2
): pp.
93
106
.
You do not currently have access to this content.