In this paper composite supports for solid oxide fuel cells were fabricated and evaluated. Substrates were composed of stainless steel and yttria stabilized zirconia (YSZ) powders mixed in different volume ratios. Their sintering behavior (linear shrinkage, resulting porosity) and high temperature properties (oxidation resistance, electrical conductivity) were evaluated. Based on those results the best composition for composite supports was selected and fuel cells were fabricated. Thin YSZ electrolytes were deposited on one side of the support and sintered at 1350 °C in pure hydrogen, while LNF (LaNi0.6Fe0.4O3) cathodes were deposited on the top of the electrolyte and fired in situ at 800 °C. The fuel cells provided power density of about 80 mWcm-2 at 800 °C. It is worth noting that this performance was achieved without adding any catalytically active phases into composite support, while at the same time the supports exhibited relatively low porosity. This demonstrates that stainless steel can serve as an anode active material. Degradation of this fuel cell was fast (12%/h), nonetheless its performance seems interesting for further investigation.

References

References
1.
Linderoth
,
S.
, 2009, “
Solid Oxide Cell R&D at Riso National Laboratory—and Its Transfer to Technology
,”
J. Electroceram.
,
22
(
1–3
), pp.
61
66
.
2.
Ju
,
Y. W.
,
Eto
,
H.
,
Inagaki
,
T.
,
Ida
,
S.
, and
Ishihara
,
T.
, 2010, “
Preparation of Ni-Fe Bimetallic Porous Anode Support for Solid Oxide Fuel Cells Using LaGaO3 Based Electrolyte Film With High Power Density
,”
J. Power Sources
,
195
(
19
), pp.
6294
6300
.
3.
Laurencin
,
J.
,
Delette
,
G.
,
Sicardy
,
O.
,
Rosini
,
S.
, and
Lefebvre-Joud
,
F.
, 2010, “
Impact of ‘Redox’ Cycles on Performances of Solid Oxide Fuel Cells: Case of the Electrolyte Supported Cells
,”
J. Power Sources
,
195
(
9
), pp.
2747
2753
.
4.
Faes
,
A.
,
Frandsen
,
H. L.
,
Pihlatie
,
M.
,
Kaiser
,
A.
, and
Goldstein
,
D. R.
, 2010, “
Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments
,”
J. Fuel Cell Sci. Technol.
,
7
(
5
),
051011
.
5.
Tucker
,
M. C.
,
Lau
,
G. Y.
,
Jacobson
,
C. P.
,
DeJonghe
,
L. C.
, and
Visco
,
S. J.
, 2007, “
Performance of Metal-Supported SOFCs With Infiltrated Electrodes
,”
J. Power Sources
,
171
(
2
), pp.
477
482
.
6.
Tucker
,
M. C.
,
Lau
,
G. Y.
,
Jacobson
,
C. P.
,
DeJonghe
,
L. C.
, and
Visco
,
S. J.
, 2008, “
Stability and Robustness of Metal-Supported SOFCs
,”
J. Power Sources
,
175
(
1
), pp.
447
451
.
7.
Tucker
,
M. C.
, 2010, “
Progress in Metal-Supported Solid Oxide Fuel Cells: A Review
,”
J. Power Sources
,
195
(
15
), pp.
4570
4582
.
8.
Stover
,
D.
,
Hathiramani
,
D.
,
Vassen
,
R.
, and
Damani
,
R. J.
, 2006, “
Plasma-Sprayed Components for SOFC Applications
,”
Surf. Coatings Technol.
,
201
(
5
), pp.
2002
2005
.
9.
Vassen
,
R.
,
Kassner
,
H.
,
Stuke
,
A.
,
Hauler
,
F.
,
Hathiramani
,
D.
, and
Stover
,
D.
, 2008, “
Advanced Thermal Spray Technologies for Applications in Energy Systems
,”
Surf. Coatings Technol.
,
202
(
18
), pp.
4432
4437
.
10.
Menzler
,
N. H.
,
Tietz
,
F.
,
Uhlenbruck
,
S.
,
Buchkremer
,
H. P.
, and
Stover
,
D.
, 2010, “
Materials and Manufacturing Technologies for Solid Oxide Fuel Cells
,”
J. Mater. Sci.
,
45
(
12
), pp.
3109
3135
.
11.
Xie
,
Y. S.
,
Neagu
,
R.
,
Hsu
,
C. S.
,
Zhang
,
X. G.
,
Deces-Petit
,
C.
,
Qu
,
W.
,
Hui
,
R.
,
Yick
,
S.
,
Robertson
,
M.
,
Maric
,
R.
, and
Ghosh
,
D.
, 2010, “
Thin Film Solid Oxide Fuel Cells Deposited by Spray Pyrolysis
,”
J. Fuel Cell Sci. Technol.
,
7
(
2
), p.
021007
.
12.
Brandner
,
M.
,
Bram
,
M.
,
Froitzheim
,
J.
,
Buchkremer
,
H. P.
, and
Stover
,
D.
, 2008, “
Electrically Conductive Diffusion Barrier Layers for Metal-Supported SOFC
,”
Solid State Ionics
,
179
(
27–32
), pp.
1501
1504
.
13.
Molin
,
S.
,
Kusz
,
B.
,
Gazda
,
M.
, and
Jasinski
,
P.
, 2008, “
Evaluation of Porous 430L Stainless Steel for SOFC Operation at Intermediate Temperatures
,”
J. Power Sources
,
181
(
1
), pp.
31
37
.
14.
Molin
,
S.
,
Gazda
,
M.
,
Kusz
,
B.
, and
Jasinski
,
P.
, 2009, “
Evaluation of 316 L Porous Stainless Steel for SOFC Support
,”
J. Eur. Ceram. Soc.
,
29
(
4
), pp.
757
762
.
15.
Molin
,
S.
,
Gazda
,
M.
, and
Jasinski
,
P.
, 2010, “
High Temperature Oxidation of Porous Alloys for Solid Oxide Fuel Cell Applications
,”
Solid State Ionics
,
181
(
25–26
), pp.
1214
1220
.
16.
Antepara
,
I.
,
Villarreal
,
I.
,
Rodriguez-Martinez
,
L. M.
,
Lecanda
,
N.
,
Castro
,
U.
, and
Laresgoiti
,
A.
, 2005, “
Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs
,”
J. Power Sources
,
151
, pp.
103
107
.
17.
Oishi
,
N.
, and
Yoo
,
Y.
, 2010, “
Evaluation of Metal Supported Ceria Based Solid Oxide Fuel Cell Fabricated by Wet Powder Spray and Sintering
,”
J. Electrochem. Soc.
,
157
(
1
), pp.
B125
B129
.
18.
Jiang
,
S. P.
, and
Chan
,
S. H.
, 2004, “
A Review of Anode Materials Development in Solid Oxide Fuel Cells
,”
J. Mater. Sci.
,
39
(
14
), pp.
4405
4439
.
19.
Villarreal
,
I.
,
Jacobson
,
C.
,
Leming
,
A.
,
Matus
,
Y.
,
Visco
,
S.
, and
De Jonghe
,
L.
, 2003, “
Metal-Supported Solid Oxide Fuel Cells
,”
Electrochem. Solid State Lett.
,
6
(
9
), pp.
A178
A179
.
You do not currently have access to this content.