Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems are attractive for future power generation with ultra-low criteria pollutant and greenhouse gas emissions. One of the challenges for SOFC-GT systems is to sufficiently pre-heat incoming air before it enters the fuel cell cathode. An ejector for cathode exhaust recirculation has the benefits of reliability, low maintenance, and cost compared to either recuperators or cathode recirculation blowers, which may be also be used for air pre-heating. In this study, a dynamic Simulink model of an ejector for cathode exhaust recirculation to pre-heat incoming fuel cell air has been developed. The ejector is to be utilized within a 100 MW SOFC-GT dynamic model operating on coal syngas. A thorough theoretical development is presented. Results for the ejector were found to be in good agreement with those reported in literature.

References

References
1.
Jansen
,
D.
,
van der Laag
,
P. C.
,
Oudhuid
,
A. B. J.
, and
Ribberink
,
J. S.
, 1994, “
Prospects for Advanced Coal-Fuelled Fuel Cell Power Plants
,”
J. Power Sources
,
49
, pp.
151
165
.
2.
Kuchonthara
,
P.
,
Bhattacharya
,
S.
, and
Tsutsumi
,
A.
, 2005, “
Combination of Thermochemical Recuperative Coal Gasification Cycle and Fuel Cell for Power Generation
,”
Fuel
,
84
, pp.
1019
1021
.
3.
Verma
,
A.
,
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2006, “
Sensitivity Analysis of a Vision 21 Coal Based Zero Emission Power Plant
,”
J. Power Sources
,
158
, pp.
417
427
.
4.
Lobachyov
,
K.
, and
Richter
,
H. J.
, 1996, “
Combined Cycle Gas Turbine Power Plant With Coal Gasification and Solid Oxide Fuel Cell
,”
J. Energy Resour. Tech.
,
118
, pp.
285
292
.
5.
Winkler
,
W.
, and
Lorenz
,
H.
, 2002, “
The Design of Stationary and Mobile Solid Oxide Fuel Cell-Gas Turbine Systems
,”
J. Power Sources
,
105
, pp.
222
227
.
6.
Winkler
,
W.
, 2006, “
Fuel Cell Hybrids, Their Thermodynamics and Sustainable Development
,”
J. Fuel Cell Sci. Tech.
,
3
, pp.
195
201
.
7.
Winkler
,
W.
,
Nehter
,
P.
,
Williams
,
M. C.
,
Tucker
,
D.
, and
Gemmen
,
R.
, 2006, “
General Fuel Cell Hybrid Synergies and Hybrid System Testing Status
,”
J. Power Sources
,
159
, pp.
656
666
.
8.
Kurz
,
R.
, 2005, “
Parameter Optimization on Combined Gas Turbine-Fuel Cell Power Plants
,”
J. Fuel Cell Sci. Tech.
,
2
, pp.
268
273
.
9.
Park
,
S. K.
,
Oh
,
K. S.
, and
Kim
,
T. S.
, 2007, “
Analysis of the Design of a Pressurized SOFC Hybrid System Using a Fixed Gas Turbine Design
,”
J. Power Sources
,
170
, pp.
130
139
.
10.
Stiller
,
C.
,
Thorud
,
B.
,
Seljebo
,
S.
,
Mathisen
,
O.
,
Karoliussen
,
H.
, and
Bolland
,
O.
, 2005, “
Finite-Volume Modeling and Hybrid-Cycle Performance of Planar and Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
141
, pp.
227
240
.
11.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2002, “
Analysis Strategies for Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
J. Eng. Gas Turbine Power
,
124
, pp.
503
509
.
12.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2003, “
A Thermodynamic Analysis of Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
J. Eng. Gas Turbine Power
,
125
, pp.
59
66
.
13.
Magistri
,
L.
,
Bozzolo
,
M.
,
Tarnowski
,
O.
,
Agnew
,
G.
, and
Massardo
,
A. F.
, 2007, “
Design and Off-Design Analysis of a MW Hybrid System Based on Rolls-Royce Integrated Planar Solid Oxide Fuel Cells
,”
J. Eng. Gas Turbine Power
,
129
, pp.
792
797
.
14.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
,
96
, pp.
352
368
.
15.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2005, “
Influence of the Anodic Recirculation Transient Behavior of the SOFC Hybrid System Performance
,”
J. Power Sources
,
149
, pp.
22
32
.
16.
Ferrari
,
M. L.
,
Bernardi
,
D.
, and
Massardo
,
A. F.
, 2006, “
Design and Testing of Ejectors for High Temperature Fuel Cell Hybrid Systems
,”
J. Fuel Cell Sci. Tech.
,
3
, pp.
284
291
.
17.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2004, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
,
129
, pp.
216
228
.
18.
Wächter
,
C.
,
Lunderstädt
,
R.
, and
Joos
,
F.
, 2006, “
Dynamic Model of a Pressurized SOFC/Gas Turbine Hybrid Power Plant for the Development of Control Concepts
,”
J. Fuel Cell Sci. Tech.
,
3
, pp.
271
279
.
19.
Roberts
,
R. A.
, and
Brouwer
,
J.
, 2006, “
Dynamic Simulation of a 220 kW Solid Oxide Fuel-Cell-Gas-Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
J. Fuel Cell Sci. Tech.
,
3
, pp.
18
25
.
20.
Roberts
,
R. A.
,
Brouwer
,
J.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2006, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable Versus Fixed Speed Gas Turbine Operation
,”
J. Power Sources
,
161
, pp.
484
491
.
21.
Roberts
,
R.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R. S.
, 2006, “
Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,”
J. Eng. Gas Turbines Power
,
128
, pp.
294
301
.
22.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
J. Fuel Cell Sci. Tech.
,
3
, pp.
144
154
.
23.
Kaneko
,
T.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
, 2006, “
Power and Temperature Control of Fluctuating Biomass Gas Fueled Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,”
J. Power Sources
,
160
, pp.
316
325
.
24.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2007, “
Control Design for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
J. Fuel Cell Sci. Tech.
,
4
, pp.
221
230
.
25.
Traverso
,
A.
,
Massardo
,
A.
,
Roberts
,
R. A.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
, 2007, “
Gas Turbine Assessment for Air Management of Pressurized SOFC/GT Hybrid Systems
,”
J. Fuel Cell Sci. Tech.
,
4
, pp.
373
383
.
26.
Mueller
,
F.
,
Jabbari
,
F.
,
Gaynor
,
R.
, and
Brouwer
,
J.
, 2007, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power Sources
,
172
, pp.
308
323
.
27.
Mueller
,
F.
Brouwer
,
J.
Kang
,
S.
Kim
,
H. S.
and
Min
,
K.
, 2007, “
Quasi-Three-Dimensional Dynamic Model of a Proton Exchange Membrane Fuel Cell for System and Controls Development
,”
J. Power Sources
,
163
, pp.
814
829
.
28.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
, 2008, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power Sources
,
176
, pp.
229
239
.
29.
Keenan
,
J. H.
,
Neumann
,
E. P.
, and
Lustwerk
,
F.
, 1950, “
An Investigation of Ejector Design by Analysis and Experiment
,”
J. Appl. Mech.
,
72
, pp.
299
309
.
30.
Sun
,
D. W.
,
Eames
,
I. W.
, and
Aphornratana
,
S.
, 1996, “
Evaluation of a Novel Combined Ejector-Absorption Cycle- I: Computer Simulation
,”
Int. J. Refrig.
,
19
, pp.
172
180
.
31.
White
,
F. M.
, 2003,
Fluid Mechanics
,
McGraw–Hill
,
New York
.
32.
Chunnanond
,
K.
, and
Aphornratana
,
S.
, 2004, “
Ejectors: Applications in Refrigeration Technology
,”
Renewable Sustainable Energy Rev.
,
8
,
129
155
.
33.
Rogdakis
,
E. D.
, and
Alexis
,
G. K.
, 2000, “
Investigation of Ejector Design at Optimum Operating Condition
,”
Energy Convers. Manage.
,
41
, pp.
1841
1849
.
34.
Cengel
,
Y. A.
, and
Boles
,
M. A.
, 2002,
Thermodynamics: An Engineering Approach
,
McGraw–Hill
,
New York
.
35.
Keenan
,
J. H.
, and
Neumann
,
E. P.
, 1942, “
A Simple Air Ejector
,”
J. Appl. Mech.
,
9
, pp.
A75
A81
.
You do not currently have access to this content.