Nickel-yttria stabilized zirconia (Ni-YSZ) is the most widely used material for solid oxide fuel cell (SOFC) anodes. Anode-supported SOFCs rely on the anode to provide mechanical strength to the positive–electrolyte–negative (PEN) structure. The stresses generated in the anode can result in the formation of microcracks that degrade its structural properties and electrochemical performance. In this paper, a brittle elastic damage model is developed for Ni-YSZ and implemented in finite element analysis with the help of a user-defined subroutine. The model is exploited to predict Ni-YSZ stress–strain relations at temperatures and porosities that are difficult to generate experimentally. It is observed that the anode material degradation depends on the level of strain regardless of the temperature at the same porosity: at higher temperature, lower load is required to produce a specified level of strain than at lower temperature. Conversely, the anode material degrades and fails at a lower level of strain at higher porosity at the same temperature. The information obtained from this research will be useful to establish material parameters to achieve optimal robustness of SOFC stacks.

References

References
1.
Douvartzides
,
S. L.
,
Coutelieris
,
F. A.
,
Demin
,
A. K.
, and
Tsiakaras
,
P. E.
, 2003, “
Fuel Options for Solid Oxide Fuel Cells: A Thermodynamic Analysis
,”
AIChE J.
,
49
(
1
), pp.
248
257
.
2.
Aguilar
,
L.
,
Zha
,
S.
,
Cheng
,
Z.
,
Winnick
,
J.
, and
Liu
,
M.
, 2004, “
A Solid Oxide Fuel Cell Operating on Hydrogen Sulfide (H2S) and Sulfur-Containing Fuels
,”
J. Power Sources
,
135
(
1–2
), pp.
17
24
.
3.
Nguyen
,
B. N.
,
Koeppel
,
B. J.
,
Ahzi
,
S.
,
Khaleel
,
M. A.
, and
Singh
,
P.
, 2006, “
Crack Growth in Solid Oxide Fuel Cell Materials: From Discrete to Continuum Damage Modeling
,”
J. Am. Ceram. Soc.
,
89
(
4
), pp.
1358
1368
.
4.
Radovic
,
M.
, and
Lara-Curzio
,
E.
, 2004, “
Mechanical Properties of Tape Cast Nickel-Based Anode Materials for Solid Oxide Fuel Cells Before and After Reduction in Hydrogen
,”
Acta Mater.
,
52
(
20
), pp.
5747
5756
.
5.
Selcuk
,
A.
,
Merere
,
G.
, and
Atkinson
,
A.
, 2001, “
The Influence of Electrodes on the Strength of Planar Zirconia Solid Oxide Fuel Cells
,”
J. Mater. Sci.
,
36
(
5
), pp.
1173
1182
.
6.
Fuel Cell Handbook
, 2004,
7th ed.
,
US Department of Energy, EG&G Technical Services, Inc.
7.
Yates
,
C.
, and
Winnick
,
J.
, 1999, “
Anode Materials for a Hydrogen Sulfide Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
146
(
8
), pp.
2841
2844
.
8.
Gunji
,
A.
,
Wen
,
C.
,
Otomo
,
J.
,
Kobayashi
,
T.
,
Ukai
,
K.
,
Mizutani
,
Y.
, and
Takahashi
,
H.
, 2004, “
Carbon Deposition Behaviour on Ni–ScSZ Anodes for Internal Reforming Solid Oxide Fuel Cells
,”
J. Power Sources
,
131
(
1–2
), pp.
285
288
.
9.
Costa-Nunes
,
O.
,
Gorte
,
R. J.
, and
Vohs
,
J. M.
, 2005, “
Comparison of the Performance of Cu–CeO2–YSZ and Ni–YSZ Composite SOFC Anodes with H2, CO, and Syngas
,”
J. Power Sources
,
141
(
2
), pp.
241
249
.
10.
Ming
,
N. Q.
, and
Takahashi
,
T.
, 1995,
Science and Technology of the Ceramic Fuel Cells
,
Elsevier
,
Amsterdam
.
11.
Larrain
,
D.
,
Van Herle
,
J.
, and
Favrat
,
D.
, 2006, “
Simulation of SOFC Stack and Repeat Elements Including Interconnect Degradation and Anode Reoxidation Risk
,”
J. Power Sources
,
161
(
1
), pp.
392
403
.
12.
Yokokawa
,
H.
,
Tu
,
H.
,
Iwanschitz
,
B.
, and
Mai
,
A.
, 2008, “
Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability
,”
J. Power Sources
,
182
(
2
), pp.
400
412
.
13.
Kupkove
,
M.
, 1993, “
Porosity Dependence of Material Elastic Moduli
,”
J. Mater. Sci.
,
28
(
19
), pp.
5265
5268
.
14.
Radovic
,
M.
, and
Lara-Curzio
,
E.
, 2004, “
Elastic Properties of Nickel-Based Anodes for Solid Oxide Fuel Cells as a Function of the Fraction of Reduced NiO
,”
J. Am. Ceram. Soc.
,
87
(
12
), pp.
2242
2246
.
15.
Liu
,
W.
,
Sun
,
X.
, and
Khaleel
,
M. A.
, 2008, “
Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-voids and Self-healing
,”
J. Power Sources
185
(
2
), pp.
1193
1200
.
16.
Lin
,
C. K.
,
Chen
,
T. T.
,
Chyou
,
Y. P.
, and
Chiang
,
L. K.
, 2007, “
Thermal Stress Analysis of a Planar SOFC Stack
,”
J. Power Sources
,
164
(
1
), pp.
238
251
.
17.
Gutierrez-Mora
,
F.
,
Ralph
,
J. M.
, and
Routbort
,
J. L.
, 2002, “
High-Temperature Mechanical Properties of Anode-Supported Bilayers
,”
Solid State Ion.
,
149
(
3–4
), pp.
177
184
.
18.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
, 2001, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
,
102
(
1–2
) pp.
144
154
.
19.
ABAQUS, 2004,
Analysis User’s Manual
, Version 6.5,
Hibbitt, Karlsson & Sorensen
,
Providence, RI
.
20.
Taqieddin
,
N.
, 2005, “Elasto-Plastic and Damage Modeling of Reinforced Concrete Ph.D. thesis,” Louisiana State University, Baton Rouge, LA.
21.
Murakami
,
S.
, and
Kamiya
,
K.
, 1997, “
Constitutive and Damage Evolution Equations of Elastic-Brittle Materials Based on Irreversible Thermodynamics
,”
Int. J. Mech. Sci.
39
(
4
), pp.
473
486
.
22.
Wang
,
P. T.
, 1977, “Complete Stress-Strain Curves of Concrete and Its Effect on Ductility of Reinforced Concrete Members Ph.D. thesis,” University of Illinois at Chicago Circle, Chicago, IL.
23.
Lemaitre
,
J.
, 1996,
A Course on Damage Mechanics
,
Springer
,
Berlin, Chap. II
.
24.
Kachanov
,
L. M.
, 1999, “
Rupture Time under Creep Conditions
,”
Int. J. Fract.
,
97
(
1–4
), pp.
11
18
.
25.
Chow
,
C. L.
, and
Wang
,
J.
, 1987, “
An Anisotropic Theory of Continuum Damage Mechanics for Ductile Fracture
,”
Eng. Fract. Mech.
27
(
5
), pp.
547
558
.
26.
Iqbal
,
G.
,
Guo
,
H.
,
Kang
,
B. S.
, and
Marina
,
O. A.
, “
Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-mechanical and Fuel Gas Contaminants Effects
,”
Int. J. Appl. Ceram. Technol.
,
8
(
1
),
13
22
.
27.
Wang
,
J. C.
, 1984, “
Young’s Modulus of Porous Materials—Part I: Theoretical Derivation of Modulus-Porosity Correlation
,”
J. Mater. Sci.
,
19
(
3
), pp.
801
808
.
28.
Rice
,
R. W.
, 1996, “
Evaluation and Extension of Physical Property-Porosity Models Based on Minimum Solid Area
,”
J. Mater. Sci.
,
31
(
1
), pp.
102
118
.
29.
Rice
,
R. W.
, 1996, “
Comparison of Physical Property-Porosity Behaviour with Minimum Solid Area Models
,”
J. Mater. Sci.
,
31
(
6
), pp.
1509
1528
.
30.
Weil
,
K. S.
,
Deibler
,
J. E.
,
Hardy
,
J. S.
,
Chick
,
L. A.
,
Coyle
,
C. A.
,
Kim
,
D. S.
, and
Xia
,
G.
, 2004, “
Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals
,”
J. Mater. Eng. Perform
,
13
(
3
), pp.
316
326
.
You do not currently have access to this content.