A two dimensional, nonisothermal numerical model of a single-chamber solid oxide fuel cell has been developed. For the sake of simplicity in developing the model, hydrogen-air mixture (80% hydrogen, 20% air by volume, which is considered as safe) has been chosen instead of hydrocarbon-air mixtures (which require complex modeling strategy such as reforming via partial oxidation and modeling of two active fuels, i.e., hydrogen and carbon monoxide). The model is based on considering yttria-stabilized zirconia (YSZ) as an electrolyte supported material, nickel yttria-stabilized zirconia (Ni-YSZ) as anode, and lanthanum strontium manganite as a cathode material. The effect of varying distance between anode and cathode, flow rate, temperature, porosity, and electrolyte thickness has been investigated in terms of electrochemical performance. It has been found that the flow rate and distance between the electrodes’ pair are the most sensitive parameters in such type of fuel cells. The model was coded in a commercial software package of finite element analysis, i.e., COMSOL MULTIPHYSICS, 3.3a.

1.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
Kidlington, Oxford
, p.
224
.
2.
Fleig
,
J.
,
Tuller
,
H. L.
, and
Maier
,
J.
, 2004, “
Electrodes and Electrolytes in Micro-SOFCs: A Discussion of Geometrical Constraints
,”
Solid State Ionics
0167-2738,
174
, pp.
261
270
.
3.
Riess
,
I.
, 2008, “
On the Single Chamber Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
175
, pp.
325
337
.
4.
Shao
,
Z.
, and
Haile
,
S. M.
, 2004, “
A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,”
Nature (London)
0028-0836,
431
, pp.
170
173
.
5.
Hibino
,
T.
,
Hashimoto
,
A.
,
Suzuki
,
M.
,
Yano
,
M.
,
Yoshida
,
S.
, and
Sano
,
M.
, 2002, “
A Solid Oxide Fuel Cell With a Novel Geometry That Eliminates the Need for Preparing a Thin Electrolyte Film
,”
J. Electrochem. Soc.
0013-4651,
149
(
2
), pp.
A195
A200
.
6.
Gazzarri
,
J. I.
, and
Kesler
,
O.
, 2007, “
Electrochemical AC Impedance Model of a Solid Oxide Fuel Cell and Its Application to Diagnosis of Multiple Degradation Modes
,”
J. Power Sources
0378-7753,
167
, pp.
100
110
.
7.
Andreassi
,
L.
,
Rubeo
,
G.
,
Ubertini
,
S.
,
Lunghi
,
P.
, and
Bove
,
R.
, 2007, “
Experimental and Numerical Analysis of a Radial Flow Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
17
), pp.
4559
4574
.
8.
Bessler
,
W. G.
, and
Gewies
,
S.
, 2007, “
Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B548
B559
.
9.
Janardhanan
,
V. M.
, and
Deutschmann
,
O.
, 2007, “
Numerical Study of Mass and Heat Transport in Solid-Oxide Fuel Cells Running on Humidified Methane
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
5473
5486
.
10.
Chung
,
C. -Y.
, and
Chung
,
Y. -C.
, 2006, “
Performance Characteristics of Micro Single-Chamber Solid Oxide Fuel Cell: Computational Analysis
,”
J. Power Sources
0378-7753,
154
, pp.
35
41
.
11.
C. Y.
,
Chung
,
Y. C.
,
Chung
,
J.
,
Kim
,
J.
,
Lee
, and
H. W.
,
Lee
, 2006, “
Numerical Modeling of Micro Single-Chamber Ceria-Based SOFC
,”
J. Electroceram.
1385-3449,
17
, pp.
959
964
.
13.
Todd
,
B.
, and
Young
,
J. B.
, 2002, “
Thermodynamic and Transport Properties
,”
J. Power Sources
0378-7753,
110
, pp.
186
200
.
14.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
15.
Sivertsen
,
B. R.
, and
Djilali
,
N.
, 2005, “
CFD-Based Modelling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
141
, pp.
65
78
.
16.
Taylor
,
R.
, and
Krishna
,
R.
, 1993,
Multi-Component Mass Transfer
,
Wiley
,
New York
.
17.
Perry
,
R.
, and
Green
,
D.
, 1983,
Perry’s Chemical Engineering Handbook
,
6th ed.
,
McGraw-Hill
,
New York
.
18.
Sissom
,
L. E.
, and
Pitts
,
D. R.
, 1972,
Elements of Transport Phenomena
,
Int. Student ed.
,
McGraw-Hill
,
New York
.
19.
Coulson
,
J. M.
, and
Richardson
,
J. F.
, 1996,
Fluid Flow, Heat Transfer and Mass Transfer
, Vol.
1
,
5th ed.
,
Butterworth-Heinemann
,
Oxford
.
20.
Coulson
,
J. M.
, and
Richardson
,
J. F.
, 1996,
Introduction to Chemical Engineering Design
, Vol.
6
,
2nd ed.
,
Butterworth-Heinemann
,
Oxford
.
21.
Cui
,
D.
,
Chung
,
Y. C.
,
Liu
,
L.
,
Dong
,
Y.
, and
Cheng
,
M.
, 2007, “
Comparison of Different Current Collecting Modes of Anode Supported Micro-Tubular SOFC Through Mathematical Modeling
,”
J. Power Sources
0378-7753,
174
, pp.
246
254
.
22.
Cheddie
,
D. F.
, and
Munroe
,
N. D. H.
, 2006, “
Three Dimensional Modeling of High Temperature PEM Fuel Cells
,”
J. Power Sources
0378-7753,
160
, pp.
215
223
.
23.
Guvelioglu
,
G. H.
, and
Stenger
,
H. G.
, 2005, “
Computational Fluid Dynamics Modeling of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
147
, pp.
95
106
.
24.
Hibino
,
T.
,
Ushiki
,
K.
,
Sato
,
T.
, and
Kuwahara
,
Y.
, 1995, “
A Novel Cell Design for Simplifying SOFC System
,”
Solid State Ionics
0167-2738,
81
, pp.
1
3
.
25.
Jacques-Bédard
,
X.
,
Napporn
,
T. W.
,
Roberge
,
R.
, and
Meunier
,
M.
, 2007, “
Coplanar Electrodes Design for a Single-Chamber SOFC
,”
J. Electrochem. Soc.
0013-4651,
154
(
3
), pp.
B305
B309
.
26.
Buergler
,
B. E.
,
Ochsner
,
M.
,
Vuillemin
,
S.
, and
Gauckler
,
L. J.
, 2007, “
From Macro- to Micro-Single Chamber Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
171
, pp.
310
320
.
27.
Hibino
,
T.
,
Tsunekawa
,
H.
,
Tanimoto
,
S.
, and
Sano
,
M.
, 2000,
J. Electrochem. Soc.
0013-4651,
147
(
4
), pp.
1338
1343
.
28.
Ahn
,
S. -J.
,
Kim
,
Y. -B.
,
Moon
,
J.
,
Lee
,
J. -H.
, and
Kim
,
J.
, 2007,
J. Power Sources
0378-7753,
171
, pp.
511
516
.
29.
Hibino
,
T.
,
Ushiki
,
K.
, and
Kuwahara
,
Y.
, 1996, “
New Concept for Simplifying SOFC System
,”
Solid State Ionics
0167-2738,
91
, pp.
69
74
.
30.
Ahn
,
S. -J.
,
Lee
,
J. -H.
,
Kim
,
J.
, and
Moon
,
J.
, 2006, “
Single-Chamber Solid Oxide Fuel Cell With Micropatterned Interdigitated Electrodes
,”
Electrochem. Solid-State Lett.
1099-0062,
9
(
5
), pp.
A228
A231
.
You do not currently have access to this content.