It is expected that fuel cells will play a significant role in a future sustainable energy system due to their high energy efficiency and possibility to use as renewable fuels. Fuels, such as biogas, can be produced locally close to the customers. The improvement for fuel cells during the past years has been fast, but the technology is still in the early phases of development; however, the potential is enormous. A computational fluid dynamics (CFD) approach (COMSOL MULTIPHYSICS) is employed to investigate effects of different fuels such as biogas, prereformed methanol, ethanol, and natural gas. The effects of fuel inlet composition and temperature are studied in terms of temperature distribution, molar fraction distribution, and reforming reaction rates within a singe cell for an intermediate temperature solid oxide fuel cell. The developed model is based on the governing equations of heat, mass, and momentum transport, which are solved together with global reforming reaction kinetics. The result shows that the heat generation within the cell depends mainly on the initial fuel composition and the inlet temperature. This means that the choice of internal or external reforming has a significant effect on the operating performance. The anode structure and catalytic characteristic have a major impact on the reforming reaction rates and also on the cell performance. It is concluded that biogas, methanol, and ethanol are suitable fuels in a solid oxide fuel cell system, while more complex fuels need to be externally reformed.

1.
Staniforth
,
J.
, and
Ormerod
,
M.
, 2002, “
Implications for Using Biogas as a Fuel Source for Solid Oxide Fuel Cells: Internal Dry Reforming in a Small Tubular Solid Oxide Fuel Cell
,”
Catal. Lett.
1011-372X,
81
, pp.
19
23
.
2.
Andersson
,
M.
,
Yuan
,
J.
,
Sundén
,
B.
, and
Wang
,
W. G.
, 2009, “
LTNE Approach and Simulation for Anode-Supported SOFCs
,”
Proceedings of the Seventh International Fuel Cell Science, Engineering and Technology Conference
, Newport Beach, CA.
3.
Ormerod
,
R. M.
, 2004, “
Fuels and Fuel Processing in Solid Oxide Fuel Cells
,”
Solid Oxide Fuel Cells
,
S. C.
Singhal
and
K.
Kendall
, eds.,
Springer-Verlag
,
Berlin
, pp.
333
362
.
4.
Dokmaingam
,
P.
,
Assabumrungrat
,
S.
,
Soottitantawat
,
A.
, and
Laosiripojana
,
N.
, 2010, “
Modelling of Tubular-Designed Solid Oxide Fuel Cell With Indirect Internal Reforming Operation Fed by Different Primary Fuels
,”
J. Power Sources
0378-7753,
195
, pp.
69
78
.
5.
Andersson
,
M.
,
Paradis
,
H.
,
Yuan
,
J.
, and
Sundén
,
B.
, 2010, “
Catalyst Materials and Catalytic Steam Reforming Reactions in SOFC Anodes
,”
Proceedings of the International Green Energy Conference
, Waterloo, ON, Canada.
6.
Laosiripojana
,
N.
, and
Assabumrungrat
,
S.
, 2007, “
Catalytic Steam Reforming of Methane, Methanol and Ethanol Over Ni/YSZ: The Possible Use of These Fuels in Internal Reforming SOFC
,”
J. Power Sources
0378-7753,
163
, pp.
943
951
.
7.
Xuan
,
J.
,
Leung
,
M. K. H.
,
Leung
,
D. Y. C.
, and
Ni
,
M.
, 2009, “
A Review of Biomass-Derived Fuel Processors for Fuel Cell Systems
,”
Renewable Sustainable Energy Rev.
1364-0321,
13
, pp.
1301
1313
.
8.
Janardhanan
,
V.
, and
Deutschmann
,
O.
, 2006, “
CFD Analysis of a Solid Oxide Fuel Cell With Internal Reforming
,”
J. Power Sources
0378-7753,
162
, pp.
1192
1202
.
9.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
, 2007, “
Micro-Scale Modeling of Solid Oxide Fuel Cells With Micro-Structurally Grades Electrodes
,”
J. Power Sources
0378-7753,
168
, pp.
369
378
.
10.
Cocco
,
D.
, and
Tola
,
V.
, 2009, “
Use of Alternative Hydrogen Energy Carriers in SOFC-MGT Hybrid Power Plants
,”
Energy Convers. Manage.
0196-8904,
50
, pp.
1040
1048
.
11.
Andersson
,
M.
, 2009, “
SOFC Modeling Considering Mass and Heat Transfer, Fluid Flow With Internal Reforming Reactions
,” Licentiate thesis, Department of Energy Sciences, Lund University, Sweden.
12.
Mignard
,
D.
, and
Pritchard
,
C.
, 2008, “
On the Use of Electrolytic Hydrogen From Variable Renewable Energies for the Enhanced Conversion of Biomass to Fuels
,”
Chem. Eng. Res. Des.
0263-8762,
86
, pp.
473
487
.
13.
Cimenti
,
M.
, and
Hill
,
J. M.
, 2009, “
Thermodynamic Analysis of Solid Oxide Fuel Cells Operated With Methanol and Ethanol Under Direct Utilization, Steam Reforming, Dry Reforming or Partial Oxidation Conditions
,”
J. Power Sources
0378-7753,
186
, pp.
377
384
.
14.
Clarke
,
S.
,
Dicks
,
A.
,
Pointon
,
K.
,
Smith
,
T.
, and
Swann
,
A.
, 1997, “
Catalytic Aspects of the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells
,”
Catal. Today
0920-5861,
38
, pp.
411
423
.
15.
Paradis
,
H.
,
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
, 2010, “
Review of Different Renewable Fuels for Potential Utilization in SOFCs
,”
Proceedings of the International Green Energy Conference
, Waterloo, ON, Canada.
16.
Le Bars
,
M.
, and
Worster
,
M. G.
, 2006, “
Interfacial Conditions Between a Pure Fluid and a Porous Medium, Implications for Binary Alloy Solidification
,”
J. Fluid Mech.
0022-1120,
550
, pp.
149
173
.
17.
COMSOL
, 2008, COMSOL MULTIPHYSICS 3.5 User Guide, Stockholm, Sweden.
18.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics, The Finite Volume Method
,
Pearson
,
UK
.
19.
Damm
,
D. L.
, and
Fedorov
,
A. G.
, 2006, “
Local Thermal Non-Equlibrium Effects in Porous Electrodes of the Hydrogen Fueled SOFC
,”
J. Power Sources
0378-7753,
159
, pp.
1153
1157
.
20.
Chao
,
C. H.
, and
Hwang
,
A. J. J.
, 2006, “
Predictions of Phase Temperatures in a Porous Cathode of Polymer Electrolyte Fuel Cells Using a Two-Equation Model
,”
J. Power Sources
0378-7753,
160
, pp.
1122
1130
.
21.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
London, UK
.
22.
Hussain
,
M. M.
,
Li
,
X.
, and
Dincer
,
I.
, 2007, “
Mathematical Modeling of Transport Phenomena in Porous SOFC Anodes
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
48
56
.
23.
Yuan
,
J.
,
Huang
,
Y.
,
Sundén
,
B.
, and
Wang
,
W. G.
, 2009, “
Analysis of Parameter Effects on Chemical Coupled Transport Phenomena in SOFC Anodes
,”
Heat Mass Transfer
0947-7411,
45
, pp.
471
484
.
24.
Suwanwarangkul
,
R.
,
Croiset
,
E.
,
Fowler
,
M. W.
,
Douglas
,
P. L.
,
Entchev
,
E.
, and
Douglas
,
M. A.
, 2003, “
Dusty-Gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
0378-7753,
122
, pp.
9
18
.
25.
Tseronis
,
K.
,
Kookos
,
I. K.
, and
Theodoropoulos
,
C.
, 2006, “
Modeling Mass Transport in Solid Oxide Fuel Cell Anodes: A Case for a Multidimensional Dusty Gas-Based Model
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
5626
5638
.
26.
Patcharavorachot
,
Y.
,
Arpornwichanop
,
A.
, and
Chuachuebsuk
,
A.
, 2008, “
Electrochemical Study of a Planar Solid Oxide Fuel Cell: Role of Support Structures
,”
J. Power Sources
0378-7753,
177
, pp.
254
261
.
27.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
, 2002, “
Energy and Exergy Analysis of Simple Solid-Oxide Fuel-Cell Power Systems
,”
J. Power Sources
0378-7753,
103
, pp.
188
200
.
28.
Bove
,
R.
, and
Ubertini
,
S.
, 2006, “
Modeling Solid Oxide Fuel Cell Operation: Approaches, Techniques and Results
,”
J. Power Sources
0378-7753,
159
, pp.
543
559
.
29.
Bessler
,
W. G.
,
Warnatz
,
J.
, and
Goodwin
,
D. G.
, 2007, “
The Influence of Equilibrium Potential on the Hydrogen Oxidation Kinetics of SOFC Anodes
,”
Solid State Ionics
0167-2738,
177
, pp.
3371
3383
.
30.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
31.
Ferguson
,
J. R.
,
Fiard
,
J. M.
, and
Herbin
,
R.
, 1996, “
Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
58
, pp.
109
122
.
32.
Klein
,
J. -M.
,
Bultel
,
Y.
,
Georges
,
S.
, and
Pons
,
M.
, 2007, “
Modeling of a SOFC Fuelled by Methane: From Direct Internal Reforming to Gradual Internal Reforming
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
1636
1649
.
33.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
34.
Nagel
,
F.
,
Schildhauer
,
T.
,
Biollaz
,
S.
, and
Stucki
,
S.
, 2008, “
Charge, Mass and Heat Transfer Interactions in Solid Oxide Fuel Cells Operated With Different Fuel Gases—A Sensitivity Analysis
,”
J. Power Sources
0378-7753,
184
, pp.
129
142
.
35.
Sanchez
,
D.
,
Chacartegui
,
R.
,
Munoz
,
A.
, and
Sanchez
,
T.
, 2008, “
On the Effect of Methane Internal Reforming in Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
1834
1844
.
36.
Drescher
,
I.
,
Lehnert
,
W.
, and
Meusinger
,
J.
, 1998, “
Structural Properties of SOFC Anodes and Reactivity
,”
Electrochim. Acta
0013-4686,
43
(
19–20
), pp.
3059
3068
.
37.
Danilov
,
V.
, and
Tade
,
M.
, 2009, “
A CFD-Based Model of a Planar SOFC for Anode Flow Field Design
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
8998
9006
.
38.
Marrero-López
,
D.
,
Ruiz-Morales
,
J. C.
,
Peña-Martínez
,
J.
,
Canales-Vázquez
,
J.
, and
Núñez
,
P.
, 2008, “
Preparation of Thin Layer Material With Macroporous Microstructure for SOFC Applications
,”
J. Solid State Chem.
0022-4596,
181
, pp.
685
692
.
39.
Paradis
,
H.
,
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
, 2010, “
CFD Modeling Considering Different Kinetic Models for Internal Reforming Reactions in an Anode-Supported SOFC
,”
Proceedings of the Eighth International Fuel Cell Science, Engineering and Technology Conference
, Brooklyn, NY.
40.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2004, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
0378-7753,
138
, pp.
120
136
.
41.
Hofmann
,
P.
,
Panopoulos
,
K. D.
,
Fryda
,
L. E.
, and
Kakaras
,
E.
, 2009, “
Comparison Between Two Methane Reforming Models Applied to a Quasi-Two-Dimensional Planar Solid Oxide Fuel Cell Model
,”
Energy
0360-5442,
34
, pp.
2151
2157
.
You do not currently have access to this content.