This study investigates the electrical performance of a planar solid oxide fuel cell unit with cross-flow configuration when the fuel utilization gets higher and the fuel inlet flows are nonuniform. A numerical code, solving the two-dimensional, simultaneous, partial differential equations of mass, energy, and electrochemistry and neglecting the stack direction variation effect, is developed. The results show that the fuel utilization increases with a decrease in the molar flow rate, and the average current density decreases when the molar flow rate drops. In addition, nonuniform pattern A induces more severe happening of nonreaction area in the corner of the fuel exit and the air inlet. This nonreaction area deteriorates the average current density and then reduces the electrical performance to 7%. This study suggests that the fuel inlet manifold should be located far from the inlet of air, which is able to decrease the deterioration to below 3% when using nonuniform profile of pattern B. On the other hand, employing a suitable air flow rate, we can easily control the operating temperature of a solid oxide fuel cell unit and the effect of nonuniform inlet air flow rate on the temperature distribution becomes negligible.

1.
Achenbach
,
E.
, 1994, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
, pp.
333
348
.
2.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
, pp.
109
114
.
3.
Beale
,
S. B.
,
Lin
,
Y.
,
Zhubrin
,
S. V.
, and
Dong
,
W.
, 2003, “
Computer Methods For Performance Prediction in Fuel Cells
,”
J. Power Sources
0378-7753,
118
, pp.
79
85
.
4.
Iwata
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
, pp.
297
308
.
5.
Lu
,
Y.
,
Schaefer
,
L.
, and
Li
,
P.
, 2005, “
Numerical Simulation of Heat Transfer and Fluid Flow of a Flat-Tube High Power Density Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
65
69
.
6.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2008, “
A Detailed Three-Dimensional Simulation of an IP-SOFC Stack
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
, pp.
1
12
.
7.
Yuan
,
P.
, and
Liu
,
S. F.
, 2007, “
Numerical Analysis of Temperature and Current Density Distribution of a Planar Solid Oxide Fuel Cell Unit With Non-Uniform Inlet Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
51
, pp.
941
957
.
8.
Au
,
S. F.
,
Blum
,
L.
,
Dengel
,
A.
,
Grob
,
B.
,
Haart
,
L. G. J.
,
Kimmerle
,
K.
, and
Wolf
,
M.
, 2005, “
Utilization of Mine Gas With a High-Temperature SOFC Fuel Cell
,”
J. Power Sources
0378-7753,
145
, pp.
582
587
.
9.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
144
154
.
10.
Ersoz
,
A.
,
Ozdogan
,
S.
,
Caglayan
,
E.
, and
Olgun
,
H.
, 2006, “
Simulation of Biomass and/or Coal Gasification Systems Integrated With Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
422
427
.
11.
Araki
,
T.
,
Taniuchi
,
T.
,
Sunakawa
,
D.
,
Nagahama
,
M.
,
Onda
,
K.
, and
Kato
,
T.
, 2007, “
Cycle Analysis of Low and High H2 Utilization SOFC/Gas Turbine Combined Cycle for CO2 Recovery
,”
J. Power Sources
0378-7753,
171
, pp.
464
470
.
12.
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Electrochemical Oxidation of H2 and CO in a H2–H2O–CO–CO2 System at the Interface of a Ni-YSZ Cermet Electrode and YSZ Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
1630
1635
.
13.
Koh
,
J. H.
,
Seo
,
H. K.
,
Yoo
,
Y. S.
, and
Lim
,
H. C.
, 2002, “
Consideration of Numerical Simulation Parameters and Heat Transfer Models for a Molten Carbonate Fuel Cell Stack
,”
Chem. Eng. J.
0300-9467,
87
, pp.
367
379
.
14.
Blomen
,
L. J. M. J.
, and
Mugerwa
,
M. N.
, 1993,
Fuel Cell Systems
,
Plenum
,
New York
, pp.
73
75
.
15.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
16.
Larminie
,
J.
, and
Dicks
,
A.
, 2000,
Fuel Cell Systems Explained
,
1st ed.
,
Wiley
,
West Sussex
, p.
53
.
17.
Maric
,
R.
,
Ohara
,
S.
,
Fukui
,
T.
,
Yoshida
,
H.
,
Nishimura
,
M.
,
Inagaki
,
T.
, and
Miura
,
K.
, 1999, “
Solid Oxide Fuel Cells With Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni-Samaria-Doped Ceria Cermet Anode
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
2006
2010
.
18.
Hines
,
A. L.
, and
Maddox
,
R. N.
, 1985,
Mass Transfer Fundamentals and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
17
59
.
You do not currently have access to this content.