The deposition of porous La1xSrxMnO3 (LSM) perovskite cathode materials by conventional plasma spray has been a challenge because of the decomposition of perovskite materials to their suboxides at high temperature. In this paper, the solution precursor plasma spraying (SPPS) process, in which solution precursors of the desired resultant materials are fed into a direct current plasma jet by atomizing gas, was used to simultaneously synthesize LSM perovskite and deposit porous cathode coatings. The experimental results show that process parameters have a significant effect on the fabricated coatings. The perovskite coatings consist of porous agglomerates of small particles with rounded features and local denser regions referred to as thick flakes. The small particles and thick flakes were held together by the previously molten material. There are two kinds of pores in the fabricated coatings: large pores located between the agglomerates and fine pores inside the agglomerates. The porous LSM cathode coatings have 2040area% of desirable homogeneous pores determined by several processing parameters. X-ray diffraction of sintered coatings shows that no suboxides of La1xSrxMnO3 perovskite appear. The results of this project indicate that the SPPS is a potential process to produce high quality cathodes for solid oxide fuel cell application.

1.
Fan
,
Z.
,
Miodownik
,
A. P.
, and
Tsakiropoulos
,
P.
, 1993, “
Microstructural Characterization of Two Phase Materials
,”
Mater. Sci. Technol.
0267-0836,
9
, pp.
1094
1100
.
2.
Schiller
,
G.
,
Ansar
,
E. A.
,
Lang
,
E. M.
, and
Patz
,
E. O.
, 2009, “
High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells (SOEC)
,”
J. Appl. Electrochem.
0021-891X,
39
, pp.
293
301
.
3.
Yoshida
,
T.
,
Okada
,
T.
,
Hamatani
,
H.
, and
Kumaoka
,
H.
, 1992, “
Integrated Fabrication Process for Solid Oxide Fuel Cells Using Novel Plasma Spraying
,”
Plasma Sources Sci. Technol.
0963-0252,
1
, pp.
195
201
.
4.
Henne
,
R.
,
Schiller
,
G.
,
Borck
,
V.
,
Mueller
,
M.
,
Lang
,
M.
, and
Ruckdaschel
,
R.
, 1998, “
SOFC Components Production—An Interesting Challenge for DC- and RF-Plasma Spraying
,”
Thermal Spray: Meeting the Challenges of the 21st Century: Proceedings of the 15th International Thermal Spray Conference
,
C.
Coddet
, ed.,
ASM International
,
Materials Park, OH
, Vol.
2
, pp.
933
938
.
5.
Wang
,
H.
,
Williams
,
J.
,
Vuong
,
K. D.
,
Shen
,
C. Q.
,
Wu
,
V.
,
Lee
,
D. H.
,
Condrate
,
R. A.
, and
Wang
,
X. W.
, 1995, “
RF Plasma Fabrication of Nano-Scaled Ceramic Oxides for Energy Devices
,”
Proceedings of the 30th Intersociety Energy Conversion Engineering Conference
,
Y.
Goswani
, ed.,
ASME
,
Orlando, FL
, Vol.
2
, pp.
295
300
.
6.
Gell
,
M.
,
Xie
,
L.
,
Ma
,
X.
,
Jordan
,
E. H.
, and
Padture
,
N. P.
, 2004, “
Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process
,”
Surf. Coat. Technol.
0257-8972,
177–178
, pp.
97
102
.
7.
Xie
,
L.
,
Ma
,
X.
,
Jordan
,
E. H.
,
Padture
,
N. P.
,
Xiao
,
D. T.
, and
Gell
,
M.
, 2004, “
Deposition of Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process
,”
J. Mater. Sci.
0022-2461,
39
, pp.
1639
1646
.
8.
Xie
,
L.
,
Ma
,
X.
,
Jordan
,
E. H.
,
Padture
,
N. P.
,
Xiao
,
D. T.
, and
Gell
,
M.
, 2004, “
Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process
,”
Surf. Coat. Technol.
0257-8972,
177–178
, pp.
103
107
.
9.
Xie
,
L.
,
Ma
,
X.
,
Jordan
,
E. H.
,
Padture
,
N. P.
,
Xiao
,
D. T.
, and
Gell
,
M.
, 2003, “
Identification of Coating Deposition Mechanisms in the Solution Precursor Plasma Spray Process Using Model Spray Experiments
,”
Mater. Sci. Eng., A
0921-5093,
362
, pp.
204
212
.
10.
Lide
,
D. R.
, 2008,
CRC Handbook of Chemistry and Physics
,
88th ed.
,
Taylor & Francis
,
New York
, pp.
43
101
.
11.
Wang
,
Y.
, 2008, “
Deposition of Solid Oxide Fuel Cell Electrodes by Solution Precursor Plasma Spray
,” Ph.D. thesis, University of Toronto, Toronto, Ontario, Canada.
12.
van Roosmalen
,
J. A. M.
,
Huijsmans
,
J. P. P.
, and
Plomp
L.
, 1993, “
Electrical Conductivity of L1−xSrxMnO3+δ
,”
Solid State Ionics
0167-2738,
66
, pp.
279
284
.
13.
Kertesz
,
M.
,
Riess
,
I.
,
Tannhauser
,
D. S.
,
Langpape
,
R.
, and
Rohr
,
F. J.
, 1982, “
Structure and Electrical Conductivity of La0.84Sr0.16MnO3
,”
J. Solid State Chem.
0022-4596,
42
(
2
), pp.
125
129
.
14.
Kuo
,
J. H.
,
Anderson
,
H. U.
, and
Sparlin
,
D. M.
, 1990, “
Oxidation-Reduction Behavior of Undoped and Sr-Doped LaMnO3: Defect Structure, Electrical Conductivity, and Thermoelectric Power
,”
J. Solid State Chem.
0022-4596,
87
(
1
), pp.
55
63
.
15.
Subba Rao
,
G. V.
,
Wanklyn
,
B. M.
, and
Rao
,
C. N. R.
, 1971, “
Electrical Transport in Rare Earth Ortho-Chromites, -Manganites and -Ferrites
,”
J. Phys. Chem. Solids
0022-3697,
32
, pp.
345
358
.
You do not currently have access to this content.