Gas diffusion layer (GDL) is one of the critical components in proton exchange membrane fuel cells (PEMFCs) and plays several important roles, such as structural support, reactants permeation, water removal, electrons, and heat conduction. The assembly pressure on bipolar plate is an important factor that affects the performance of PEMFC stack. Not enough assembly pressure leads to leakage of fuels and high contact resistance. Too much pressure, on the other hand, results in damage to the GDL, which increases the GDL Ohmic resistance and interfacial contact resistance, and in turn influences the reactant transport and water removal. The objective of the present study is to develop a numerical model to predict the onset of GDL failure and obtain the maximum assembly pressure on bipolar plate. Composite micromechanical model is applied to calculate the effective elastic properties of GDL; strength failure criterion is established to judge GDL damage with the stress distribution; finite element method model is developed to show the failure zone and the failure propagation in GDL combining the estimated elastic properties and strength failure criterion. Toray TGP-H-060 carbon paper is introduced as a numerical example and the numerical results show good agreements with experimental results. This numerical prediction model is beneficial to understand the basic mechanism of GDL failure and helpful to guide the assembling of PEMFC stack.

1.
EG&G Technical Services, Inc.
, 2004,
Fuel Cell Handbook
,
7th ed.
, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, West Virginia.
2.
Mehta
,
V.
, and
Cooper
,
J. S.
, 2003, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
0378-7753,
114
(
1
), pp.
32
53
.
3.
Escribano
,
S.
,
Blachot
,
J. F.
,
Etheve
,
J.
,
Morin
,
A.
, and
Mosdale
,
R.
, 2006, “
Characterization of PEMFCs Gas Diffusion Layers Properties
,”
J. Power Sources
0378-7753,
156
(
1
), pp.
8
13
.
4.
Lee
,
W. -K.
,
Ho
,
C. -H.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
, 1999, “
The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
84
(
1
), pp.
45
51
.
5.
Zhou
,
P.
,
Wu
,
C. W.
, and
Ma
,
G. J.
, 2007, “
Influence of Clamping Force on the Performance of PEMFCs
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
874
881
.
6.
Yoon
,
Y. -G.
,
Lee
,
W. -Y.
,
Park
,
G. -G.
,
Yang
,
T. -H.
, and
Kim
,
C. -S.
, 2004, “
Effects of Channel Configurations of Flow Field Plates on the Performance of a PEMFC
,”
Electrochim. Acta
0013-4686,
50
(
2–3
), pp.
709
712
.
7.
Mishra
,
V.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2004, “
Measurement and Prediction of Electrical Contact Resistance Between Gas Diffusion Layers and Bipolar Plate for Applications to PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
1
(
1
), pp.
2
9
.
8.
Zhou
,
Y.
,
Lin
,
G.
,
Shih
,
A. J.
, and
Hu
,
S. J.
, 2007, “
A Micro-Scale Model for Predicting Contact Resistance Between Bipolar Plate and Gas Diffusion Layer in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
777
783
.
9.
Wu
,
Z.
,
Wang
,
S.
,
Zhang
,
L.
, and
Hu
,
S. J.
, 2009, “
An Analytical Model and Parametric Study of Electrical Contact Resistance in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
189
(
2
), pp.
1066
1073
.
10.
Roshandel
,
R.
,
Farhanieh
,
B.
, and
Saievar-Iranizad
,
E.
, 2005, “
The Effects of Porosity Distribution Variation on PEM Fuel Cell Performance
,”
Renewable Energy
0960-1481,
30
(
10
), pp.
1557
1572
.
11.
Zhou
,
P.
,
Wu
,
C. W.
, and
Ma
,
G. J.
, 2006, “
Contact Resistance Prediction and Structure Optimization of Bipolar Plates
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1115
1122
.
12.
Bazylak
,
A.
,
Sinton
,
D.
,
Liu
,
Z. S.
, and
Djilali
,
N.
, 2007, “
Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
784
792
.
13.
Tsai
,
S. W.
, 1968,
Strength Theories of Filamentary Structures Fundamental Aspects of Fiber Reinforced Plastic Composites
,
Wiley-Interscience
,
New York
, pp.
3
11
.
14.
Tsai
,
S. W.
, and
Wu
,
E. M.
, 1971, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
0021-9983,
5
(
1
), pp.
58
80
.
15.
Wang
,
Y.
,
Wang
,
C. -Y.
, and
Chen
,
K. S.
, 2007, “
Elucidating Differences Between Carbon Paper and Carbon Cloth in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
52
(
12
), pp.
3965
3975
.
16.
Mathias
,
M.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003,
Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vol. 3: Fuel Cell Technology and Application
,
Wiley
,
New York
, pp.
517
538
.
17.
Zhao
,
Y. H.
,
Tandon
,
G. P.
, and
Weng
,
G. J.
, 1988, “
Elastic Moduli for a Class of Porous Materials
,”
Acta Mech.
0001-5970,
76
(
1–2
), pp.
105
130
.
18.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
0001-6160,
21
(
5
), pp.
571
574
.
19.
Pettermann
,
H. E.
,
Bohm
,
H. J.
, and
Alcala
,
J.
, 2002, “
Normalized Diagrams for Micromechanical Estimates of the Elastic Response of Composite Materials
,”
Metall. Mater. Trans. A
1073-5623,
33
(
10
), pp.
3187
3199
.
20.
Tandon
,
G. P.
, and
Weng
,
G. J.
, 1984, “
The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites
,”
Polym. Compos.
0272-8397,
5
(
4
), pp.
327
333
.
21.
Abaqus Inc., ABAQUS V6.7 User’s Manual.
22.
Advani
,
S. G.
, and
Tucker
,
C. L.
, 1987, “
The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites
,”
J. Rheol.
0148-6055,
31
(
8
), pp.
751
784
.
23.
Hedgepeth
,
J. M.
, and
Van Dyke
,
P.
, 1967, “
Local Stress Concentrations in Imperfect Filamentary Composite Materials
,”
J. Compos. Mater.
0021-9983,
1
(
3
), pp.
294
304
.
24.
Pawlak
,
J. J.
, and
Keller
,
D. S.
, 2005, “
The Compressive Response of a Stratified Fibrous Structure
,”
Mech. Mater.
0167-6636,
37
(
11
), pp.
1132
1142
.
25.
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
2
), pp.
119
124
.
26.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle
,”
J. Power Sources
0378-7753,
161
(
2
), pp.
987
996
.
27.
Hattum
,
F. W. J. V.
, and
Bernardo
,
C. A.
, 1999, “
A Model to Predict the Strength of Short Fiber Composites
,”
Polym. Compos.
0272-8397,
20
(
4
), pp.
524
533
.
28.
Stoner
,
E. G.
,
Edie
,
D. D.
, and
Durham
,
S. D.
, 1994, “
An End-Effect Model for the Single-Filament Tensile Test
,”
J. Mater. Sci.
0022-2461,
29
(
24
), pp.
6561
6574
.
29.
Doshi
,
S. R.
, and
Charrier
,
J. M.
, 1989, “
A Simple Illustration of Structure-Properties Relationships for Short Fiber-Reinforced Thermoplastics
,”
Polym. Compos.
0272-8397,
10
(
1
), pp.
28
38
.
30.
Wagner
,
H. D.
, and
Phoenix
,
S. L.
, 1984, “
A Study of Statistical Variability in the Strength of Single Aramid Filaments
,”
J. Compos. Mater.
0021-9983,
18
(
4
), pp.
312
338
.
31.
Tang
,
Y.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Gilbert
,
M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
An Experimental Investigation of Humidity and Temperature Effects on the Mechanical Properties of Perfluorosulfonic Acid Membrane
,”
Mater. Sci. Eng., A
0921-5093,
425
(
1–2
), pp.
297
304
.
32.
2008, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039/D3039M-08.
33.
Toray Industry Inc.
, Technical data sheet.
34.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
, 2003, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
11
), pp.
1263
1272
.
35.
He
,
W.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 2004, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
0001-1541,
46
(
10
), pp.
2053
2064
.
You do not currently have access to this content.