The goal of this study is to design a gas diffusion layer (GDL) for a polymer electrolyte membrane (PEM) fuel cell with a graduated permeability and thereby graduating the resistance to flow throughout the GDL. It has been shown that in using conventional materials, the GDL exhibits a higher resistance in the through-plane direction due to the orientation of the small carbon fibers that make up the carbon paper or carbon cloth. In this study, a GDL is designed for an unconventional PEM fuel cell stack where the reactant gases are supplied through the side of the GDL rather than through flow field channels machined into a bipolar plate. The effects of changing in-plane permeability, through-plane permeability, GDL thickness, and oxygen utilization on the expected current density distribution at the catalyst layer are studied. Three different thicknesses and three different utilizations are investigated. It has been found that a thinner GDL with a lower utilization yields a higher current density on the electrode. A quantitative metric to measure uniformity of reactant distribution and the ratio of the standard deviation of the current density to the average current density was introduced, and it was found that while the uniformity of the reactant distribution is independent of thickness of the GDL, it is inversely proportional to utilization.

1.
Scholta
,
J.
,
Berq
,
N.
,
Wilde
,
P.
,
Jorissen
,
L.
, and
Garche
,
J.
, 2004, “
Development and Performance of a 10 kW PEMFC Stack
,”
J. Power Sources
0378-7753,
127
(
1–2
), pp.
206
212
.
2.
Scholta
,
J.
,
Rohland
,
B.
,
Trapp
,
V.
, and
Focken
,
U.
, 1999, “
Investigations on Novel Low-Cost Graphite Composite Bipolar Plates
,”
J. Power Sources
0378-7753,
84
(
2
), pp.
231
234
.
3.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
West Sussex
.
4.
O’Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
, 2009,
Fuel Cell Fundamentals
,
Wiley
,
Hoboken, NJ
.
5.
Bansode
,
A. S.
,
Patel
,
S.
,
Kumar
,
T. R.
,
Muralidhar
,
B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2007, “
Numerical Simulation of Effects of Flow Maldistribution on Heat and Mass Transfer in a PEM Fuel Cell Stack
,”
Heat Mass Transfer
0947-7411,
43
, pp.
1037
1047
.
6.
Hensel
,
J. P.
,
Gemmen
,
R. S.
,
Thornton
,
J. D.
,
Vipperman
,
J. S.
,
Clark
,
W. W.
, and
Bucci
,
B. A.
, 2007, “
Effects of Cell-to-Cell Fuel Mal-Distribution on Fuel Cell Performance and a Means to Reduce Mal-Distribution Using MEMS Micro-Valves
,”
J. Power Sources
0378-7753,
164
(
1
), pp.
115
125
.
7.
Park
,
J.
, and
Li
,
X.
, 2006, “
Effect of Flow and Temperature Distribution on the Performance of a PEM Fuel Cell Stack
,”
J. Power Sources
0378-7753,
162
(
1
), pp.
444
459
.
8.
Gerteisen
,
D.
,
Heilmann
,
T.
, and
Ziegler
,
C.
, 2009, “
Modeling the Phenomena of Dehydration and Flooding of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
187
(
1
), pp.
165
181
.
9.
Karimi
,
G.
,
Jafarpour
,
F.
, and
Li
,
X.
, 2009, “
Characterization of Flooding and Two-Phase Flow in Polymer Electrolyte Membrane Fuel Cell Stacks
,”
J. Power Sources
0378-7753,
187
(
1
), pp.
156
164
.
10.
Dhakate
,
S. R.
,
Sharma
,
S.
,
Borah
,
M.
,
Mathur
,
R. B.
, and
Dhami
,
T. L.
, 2008, “
Development and Characterization of Expanded Graphite-Based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
,”
Energy Fuels
0887-0624,
22
(
5
), pp.
3329
3334
.
11.
Mérida
,
W. R.
,
McLean
,
G.
, and
Djilali
,
N.
, 2001, “
Non-Planar Architecture for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
102
(
1–2
), pp.
178
185
.
12.
Marcinkoski
,
J.
,
Kopasz
,
J. P.
, and
Benjamin
,
T. G.
, 2008, “
Progress in the US DOE Fuel Cell Subprogram Efforts in Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
14
), pp.
3894
3902
.
13.
Marcinkoski
,
J.
, and
Thomas
,
D.
, 2007, “
Progress in PEM Fuel Cell Activities
,”
TMS Annual Meeting
, Orlando, FL, pp.
1
10
.
14.
Lipman
,
T. E.
,
Edwards
,
J. L.
, and
Kammen
,
D. M.
, 2004, “
Fuel Cell System Economics: Comparing the Costs of Generating Power With Stationary and Motor Vehicle PEM Fuel Cell Systems
,”
Energy Policy
0301-4215,
32
(
1
), pp.
101
125
.
15.
Kingsley
,
B.
, 2007, “
Manufacturing Research and Development for Hydrogen and Fuel Cell Systems
,” Department of Energy FOA.
16.
Kamarudin
,
S. K.
,
Dauda
,
W. R. W.
,
Md.Somb
,
A.
,
Takriffa
,
M. S.
, and
Mohammada
,
A. W.
, 2006, “
Technical Design and Economic Evaluation of a PEM Fuel Cell System
,”
J. Power Sources
0378-7753,
157
(
2
), pp.
641
649
.
17.
Qu
,
S.
,
Li
,
X.
,
Hou
,
M.
,
Shao
,
Z.
, and
Yi
,
B.
, 2008, “
The Effect of Air Stoichiometry Change on the Dynamic Behavior of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
185
(
1
), pp.
302
310
.
18.
Rismanchi
,
B.
, and
Akbari
,
M. H.
, 2008, “
Performance Prediction of Proton Exchange Membrane Fuel Cells using a Three-Dimensional Model
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
1
), pp.
439
448
.
19.
Mighri
,
F.
,
Huneault
,
M.
, and
Champagne
,
M.
, 2004, “
Electrically Conductive Thermoplastic Blends for Injection and Compression Molding of Bipolar Plates in the Fuel Cell Application
,”
Polym. Eng. Sci.
0032-3888,
44
(
9
), pp.
1755
1765
.
20.
Tang
,
H.
,
Wang
,
S.
,
Pan
,
M.
, and
Yuan
,
R.
, 2007, “
Porosity-Graded Micro-Porous Layers for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
166
, pp.
41
46
.
21.
Wang
,
X.
,
Zhang
,
H.
,
Zhang
,
J.
,
Xu
,
H.
,
Zhu
,
X.
,
Chen
,
J.
, and
Yi
,
B.
, 2006, “
Bi-Functional Micro-Porous Layer With Composite Carbon Black for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
162
(
1
), pp.
474
479
.
22.
Wang
,
X. L.
,
Zhang
,
H. M.
,
Zhang
,
J. L.
,
Xu
,
H. F.
,
Tian
,
Z. Q.
,
Chen
,
J.
,
Zhong
,
H. X.
,
Liang
,
Y. M.
, and
Yi
,
B. L.
, 2006, “
Micro-Porous Layer With Composite Carbon Black for PEM Fuel Cells
,”
Electrochim. Acta
0013-4686,
51
(
23
), pp.
4909
4915
.
23.
Bhamidipati
,
K. L.
,
Amani
,
H.
,
Straus
,
S.
, and
Harris
,
T. A. L.
, 2008, “
Numerical Simulation of an Innovative PEM Fuel Cell Stack
,”
Sixth International Fuel Cell Science, Engineering and Technology Conference
, Denver, CO.
24.
Chen
,
F.
,
Chang
,
M. -H.
, and
Hsieh
,
P. -T.
, 2008, “
Two-Phase Transport in the Cathode Gas Diffusion Layer of PEM Fuel Cell With a Gradient in Porosity
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
10
), pp.
2525
2529
.
25.
Chu
,
H. -S.
,
Yeh
,
C.
, and
Chen
,
F.
, 2003, “
Effects of Porosity Change of Gas Diffuser on Performance of Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
123
(
1
), pp.
1
9
.
26.
Yi
,
S. J.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
38
45
.
27.
Jang
,
J. -H.
,
Yan
,
W. -M.
, and
Shih
,
C. -C.
, 2006, “
Effects of the Gas Diffusion-Layer Parameters on Cell Performance of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
161
(
1
), pp.
323
332
.
28.
Chen
,
C. -H.
,
Jung
,
S. -P.
, and
Yen
,
S. -C.
, 2007, “
Flow Distribution in the Manifold of PEM Fuel Cell Stack
,”
J. Power Sources
0378-7753,
173
(
1
), pp.
249
263
.
29.
Sivertsen
,
B. R.
, and
Djilali
,
N.
, 2005, “
CFD-Based Modelling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
141
(
1
), pp.
65
78
.
30.
Sun
,
H.
,
Liu
,
H.
, and
Guo
,
L. -J.
, 2005, “
PEM Fuel Cell Performance and Its Two-Phase Mass Transport
,”
J. Power Sources
0378-7753,
143
(
1–2
), pp.
125
135
.
31.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
, 2006, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
0378-7753,
162
(
1
), pp.
228
238
.
32.
Pharoah
,
J. G.
,
Karan
,
K.
, and
Sun
,
W.
, 2006, “
On Effective Transport Coefficients in PEM Fuel Cell Electrodes: Anisotropy of the Porous Transport Layers
,”
J. Power Sources
0378-7753,
161
(
1
), pp.
214
224
.
33.
Ihonen
,
J.
,
Mikkola
,
M.
, and
Lindbergh
,
G.
, 2004, “
Flooding of Gas Diffusion Backing in PEFCs: Physical and Electrochemical Characterization
,”
J. Electrochem. Soc.
0013-4651,
151
(
8
), pp.
A1152
A1161
.
34.
Prasanna
,
M.
,
Ha
,
H. Y.
,
Cho
,
E. A.
,
Hong
,
S. -A.
, and
Oh
,
I. -H.
, 2004, “
Influence of Cathode Gas Diffusion Media on the Performance of the PEMFCs
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
147
154
.
35.
Tomadakis
,
M. M.
, and
Robertson
,
T. J.
, 2005, “
Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates With Experimental and Analytical Results
,”
J. Compos. Mater.
0021-9983,
39
(
2
), pp.
163
188
.
36.
Tomadakis
,
M. M.
, and
Sotirchos
,
S. V.
, 1991, “
Effective Kundsen Diffusivities in Structures of Randomly Overlapping Fibers
,”
AIChE J.
0001-1541,
37
(
1
), pp.
74
86
.
37.
Hwang
,
J. J.
,
Chen
,
C. K.
,
Savinell
,
R. F.
,
Liu
,
C. C.
, and
Wainright
,
J.
, 2004, “
A Three-Dimensional Numerical Simulation of the Transport Phenomena in the Cathodic Side of a PEMFC
,”
J. Appl. Electrochem.
0021-891X,
34
(
2
), pp.
217
224
.
38.
Zhang
,
Z.
,
Wang
,
X.
, and
Zhang
,
X.
, 2008, “
Optimizing the Performance of a Single PEM Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
(
3
), p.
031007
.
39.
Sui
,
P. C.
, and
Djilali
,
N.
, 2006, “
Analysis of Coupled Electron and Mass Transport in the Gas Diffusion Layer of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
161
, pp.
294
300
.
40.
Birgersson
,
E.
, and
Vynnycky
,
M.
, 2006, “
A Quantitative Study of the Effect of Flow-Distributor Geometry in the Cathode of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
153
(
1
), pp.
76
88
.
41.
Liu
,
Q.
, and
Wu
,
J.
, 2006, “
Multi-Resolution PEM Fuel Cell Model Validation and Accuracy Analysis
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
1
), pp.
51
61
.
42.
Zhukovsky
,
K. V.
, 2003, “
Three Dimensional Model of Oxygen Transport in a Porous Diffuser of a PEM Fuel Cell
,”
AIChE J.
0001-1541,
49
(
12
), pp.
3029
3036
.
43.
Wesselingh
,
J. A.
, and
Krishna
,
R.
, 2000,
Mass Transfer in Multicomponent Mixtures
,
Delft University Press
,
Delft, The Netherlands
.
44.
Parvazinia
,
M.
,
Nassehi
,
V.
,
Wakeman
,
R. J.
, and
Ghoreishy
,
M. H. R.
, 2006, “
Finite Element Modelling of Flow Through a Porous Medium Between Two Parallel Plates Using the Brinkman Equation
,”
Transp. Porous Media
0169-3913,
63
, pp.
71
90
.
45.
Wang
,
X. -D.
,
Duanb
,
Y. -Y.
,
Yanc
,
W. -M.
, and
Peng
,
X. -F.
, 2008, “
Effects of Flow Channel Geometry on Cell Performance for PEM Fuel Cells With Parallel and Interdigitated Flow Fields
,”
Electrochim. Acta
0013-4686,
53
(
16
), pp.
5334
5343
.
This content is only available via PDF.
You do not currently have access to this content.