The main driving force in the developments of consumer electronics, such as cell phones and laptop computers, is longer run times and more functionality. In this quest for higher energy densities, battery characteristics improve at a constant pace. Fuel cells seem to be the next big technology breakthrough improving energy density with a factor of 3–10 compared with current lithium-ion batteries. In particular, the direct methanol fuel cell (DMFC) is an interesting opportunity because of the high energy capacity of methanol and the handling of the fuel making “charging” easy, safe, and fast. To get information on the different aspects that determine the boundaries of the DMFC power source, a power source for an MP3 player, the Samsung YP-Z5F, is designed. This design is based on a DMFC plus battery (DMFC hybrid) and utilizes standard available components [Flipsen, 2007, “Design Challenges for a Fuel Cell Powered MP3 Player,” International Power Sources Symposium, Bath, Great Britain]. The design of a DMFC hybrid power source in a conventional way (standard practice engineering) will not result in a smaller power source for this particular application. The design has a power and energy densities of lower than the currently available lithium-polymer battery, mainly because of the low fuel-efficiency of the cell at low temperatures, the use of commercially available but still too bulky components, and a large amount of dead space (34%). There are three ways to increase the power and energy densities of the system. First is by increasing the fuel-efficiency of the cells membrane. Second is by scaling down the system components to the right proportions and third is by improving the systems architecture diminishing empty space. This paper presents the design of a DMFC hybrid with scaled-down components. A literature study is done on the efficiency improvements of DMFC cells. The results are presented in a computer aided design (CAD) model and evaluated, comparing the “improved design” with “standard practice” design and the current lithium-polymer battery. The energy density of the redesigned fuel cell system is still low compared with the used lithium-polymer battery but an improvement to the preliminary design.

1.
M. Ryynänen
,
M.
, and
Tasa
,
S.
, 2005, Optimized Energy for Future Mobile Multimedia Devices.
2.
Broussely
,
M.
, and
Archdale
,
G.
, 2004, “
Li-Ion Batteries and Portable Power Source Prospects for the Next 5–10 Years
,”
J. Power Sources
0378-7753,
136
(
2
), pp.
386
394
.
3.
Flipsen
,
B.
, 2006, “
Power Sources Compared: The Ultimate Truth?
,”
J. Power Sources
0378-7753,
162
(
2
), pp.
927
934
.
4.
Flipsen
,
B.
, 2007, “
Design Challenges for a Fuel Cell Powered MP3 Player
,”
International Power Sources Symposium
,
Bath, Great Britain
.
5.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
Wiley
,
Chichester
.
6.
Oedegaard
,
A.
, and
Hentschel
,
C.
, 2006, “
Characterisation of a Portable DMFC Stack and a Methanol-Feeding Concept
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
177
187
.
7.
Padhy
,
B. R.
, and
Reddy
,
R. G.
, 2006, “
Performance of DMFC With SS 316 Bipolar/End Plates
,”
J. Power Sources
0378-7753,
153
(
1
), pp.
125
129
.
8.
Chen
,
C.
,
Liu
,
D.
,
Huang
,
C.
, and
Chang
,
C.
, 2007, “
Portable DMFC System With Methanol Sensor-Less Control
,”
J. Power Sources
0378-7753,
167
(
2
), pp.
442
449
.
9.
Burke
,
A.
, 2007, “
R&D Considerations for the Performance and Application of Electrochemical Capacitors
,”
Electrochim. Acta
0013-4686,
53
(
3
), pp.
1083
1091
.
10.
Maxwell Technologies
, 2004, “
Electric Double Layer Capacitor: BOOSTCAP Ultraca-Pacitor
,” Document No. 1003996, Rev. 6.
11.
Yogmogita
,
H.
, 2005, “
Electrical Storage Technology Combines Li-Ion Capacitors
,” Nikkei Electronics Asia Volume.
12.
Jayalakshmi
,
M.
, and
Balasubramanian
,
K.
, 2008, “
Simple Capacitors to Supercapacitors—An Overview
,”
Int. J. Electrochem. Sci.
,
3
(
11
), pp.
1196
1217
. 1452-3981
13.
Bartels Mikrotechnik GmbH
, 2008, www.bartels-mikrotechnik.dewww.bartels-mikrotechnik.de, Datasheet of the MP5 and MP6 Micropump, URL www.bartels-mikrotechnik.dewww.bartels-mikrotechnik.de.
14.
ThinXXS Microtechnology AG
, www.thinxxs.comwww.thinxxs.com, 2006, Datasheet MDP1304, Micro Diaphragm Pump, URL www.thinxxs.comwww.thinxxs.com.
15.
Schwartzer GmbH
, 2009, SP V 125 PZ-L Datasheet, The Revolutionary Generation of Piezo-Pumps, URL www.schwartzer.comwww.schwartzer.com.
16.
Böhm
,
S.
,
Olthuis
,
W.
, and
Bergveld
,
P.
, 1999, “
A Plastic Micropump Constructed With Conventional Techniques and Materials
,”
Sens. Actuators, A
0924-4247,
77
, pp.
223
228
.
17.
HNP Mikrosysteme GmbH.
, 2006, www.hnp-mikrosysteme.dewww.hnp-mikrosysteme.de, Micro Annular Gear Pump MZR(R)-2521 in Dosing Pump for Analytical Instrumentation, URL www.hnp-mikrosysteme.dewww.hnp-mikrosysteme.de.
18.
Richter
,
A.
,
Plettner
,
A.
,
Hofmann
,
K.
, and
Sandmaier
,
H.
, 1991, “
A Micromachined Electrohydrodynamica (EHD) Pump
,”
Sens. Actuators, A
0924-4247,
29
, pp.
159
168
.
19.
Chen
,
C.
,
Zeng
,
S.
,
Mikkelsen
,
J.
, and
Santiago
,
J.
, 2000, “
Development of a Planar Electrokinetic Micropump
,”
ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, pp. 523–528.
20.
Vishal
,
S.
,
Suresh
,
V.
, and
Arvind
,
R.
, 2004, “
Microscale Pumping Technologies for Microchannel Cooling Systems
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
191
221
.
21.
Laser
,
D.
, and
Santiago
,
J.
, 2004, “
A Review of Micropumps
,”
J. Micromech. Microeng.
0960-1317,
14
(
6
), pp.
R35
R64
.
22.
Richter
,
M.
, 2006, “
Micropumps—From the Lab to the Fab
,” Actuator 2006.
23.
Richter
,
M.
, 2007, Ersterpreis fur die kleinste siliziumpumpe der welt.
24.
Zhu
,
M.
,
Kirby
,
P.
,
Wacklerle
,
M.
,
Herz
,
M.
, and
Richter
,
M.
, 2009, “
Optimization Design of Multi-Material Micropump Using Finite Element Method
,”
Sens. Actuators, A
0924-4247,
149
(
1
), pp.
130
135
.
25.
Flipsen
,
B.
, 2009, Private Communication With M. Richter (fraunhofer institut) About Fraunhofers Micropump.
26.
Kaemper
,
K.
,
Doepper
,
J.
,
Erhrfeld
,
W.
, and
Oberbeck
,
S.
, 1998, “
A Self-Filling Low-Cost Membrane Micropump
,”
IEEE
,
Heidelberg, Germany
.
27.
Cabuz
,
C.
,
Herb
,
W.
,
Cabuz
,
E.
, and
Lu
,
S.
, 2001, “
The Dual Diaphragm Pump
,”
Micro Electro Mechanical Systems (MEMS)
,
IEEE
,
New York
.
28.
Schabmueller
,
C. G. J.
, 2002, “
Self-Alignement Gas/Liquid Micropump
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
420
424
.
29.
Xavitech, AB
, 2007, www.xavitech.comwww.xavitech.com, Datasheet: V200 and P200 GAS, URL www.xavitech.comwww.xavitech.com.
30.
Gardner Denver Thomas
, 2006, www.rtpumps.comwww.rtpumps.com, Rotary Vane Pump BL-G 085 M, URL www.rtpumps.comwww.rtpumps.com.
31.
Sparks
,
D.
,
Laroche
,
C.
,
Tran
,
N.
,
Goetzinger
,
D.
,
Najafi
,
N.
,
Kawaguchi
,
K.
, and
Yasuda
,
M.
, 2005, “
A New Methanol Concentration Microsensor for Improved DMFC Performance
,”
Fuel Cell Summit 2005
.
32.
Toshiba
, 2005, “
Toshiba Integrates Prototypes of World’s Smallest Direct Methanol Fuel Cell Unit Into Mobile Audio Players
,” Press Release.
You do not currently have access to this content.