The intention of this work is to investigate the control characteristics of molten carbonate fuel cell hybrid systems through dynamic simulation. Because of the complexity and interaction between different components in the hybrid systems, several parameters, such as the turbine rotational speed, the temperatures within the fuel cell, the differential pressure between the anodic and the cathodic side, and the steam-to-carbon ratio, need to be monitored and kept within safe limits. On the other hand, the system response to load variations is required to be as quick as possible in order to meet the energy demand. Several control loops were introduced into the hybrid system. This paper focuses on the control performance to regulate the net electrical power from the hybrid system, avoiding malfunctions or damage. The results for several operating conditions are presented and discussed.

1.
EG&G Technical Services, Inc.
, 2004,
Fuel Cell Handbook
,
7th ed.
,
U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory
,
Morgantown, WV
.
2.
Tomczyk
,
P.
, 2006, “
MCFC Versus Other Fuel Cells—Characteristics, Technologies and Prospects
,”
J. Power Sources
0378-7753,
160
, pp.
858
862
.
3.
Selman
,
J. R.
, 2006, “
Molten-Salt Fuel Cells—Technical and Economic Challenges
,”
J. Power Sources
0378-7753,
160
, pp.
852
857
.
4.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
England
.
5.
Koh
,
J. -H.
,
Seo
,
H. -K.
,
Yoo
,
Y. -S.
, and
Lim
,
H. C.
, 2002, “
Consideration of Numerical Simulation Parameters and Heat Transfer Models for a Molten Carbonate Fuel Cell Stack
,”
Chem. Eng. J.
0300-9467,
87
, pp.
367
379
.
6.
Heidebrecht
,
P.
, and
Sundmacher
,
K.
, 2003, “
Molten Carbonate Fuel Cell (MCFC) With Internal Reforming: Model-Based Analysis of Cell Dynamics
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
1029
1036
.
7.
Brouwer
,
J.
,
Jabbari
,
F.
,
Leal
,
E. M.
, and
Orr
,
T.
, 2006, “
Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation
,”
J. Power Sources
0378-7753,
158
, pp.
213
224
.
8.
Baranak
,
M.
, and
Atakül
,
H.
, 2007, “
A Basic Model for Analysis of Molten Carbonate Fuel Cell Behavior
,”
J. Power Sources
0378-7753,
172
(
2
), pp.
831
839
.
9.
Koh
,
J. -H.
,
Kang
,
B. S.
, and
Lim
,
H. C.
, 2000, “
Effect of Various Stack Parameters on Temperature Rise in Molten Carbonate Fuel Cell Stack Operation
,”
J. Power Sources
0378-7753,
91
, pp.
161
171
.
10.
Kang
,
B. S.
,
Koh
,
J. -H.
, and
Lim
,
H. C.
,2002, “
Effect of System Configuration and Operating Condition on MCFC System Efficiency
,”
J. Power Sources
0378-7753,
108
, pp.
232
238
.
11.
Hao
,
H.
,
Zhang
,
H.
,
Weng
,
S.
, and
Su
,
M.
, 2006, “
Dynamic Numerical Simulation of a Molten Carbonate Fuel Cell
,”
J. Power Sources
0378-7753,
161
, pp.
849
855
.
12.
Lukas
,
M. D.
,
Lee
,
K. Y.
, and
Ghezel-Ayagh
,
H.
, 1999 “
Development of a Stack Simulation Model for Control Study on Direct Reforming Molten Carbonate Fuel Cell Power Plant
,”
IEEE Trans. Energy Convers.
0885-8969,
14
(
4
), pp.
1651
1657
.
13.
Lukas
,
M. D.
, and
Lee
,
K. Y.
, 2005, “
Model-Based Analysis for the Control of Molten Carbonate Fuel Cell Systems
,”
Fuel Cells
0532-7822,
5
(
1
), pp.
115
125
.
14.
Lukas
,
M. D.
,
Lee
,
K. Y.
, and
Ghezel-Ayagh
,
H.
, 2002, “
Modeling and Cycling Control of Carbonate Fuel Cell Power Plants
,”
Control Eng. Pract.
0967-0661,
10
, pp.
197
206
.
15.
Grillo
,
O.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2003, “
Hybrid Systems for Distributed Power Generation Based on Pressurization and Heat Recovering of an Existing 100 kW Molten Carbonate Fuel Cell
,”
J. Power Sources
0378-7753,
115
, pp.
252
267
.
16.
Au
,
S. F.
,
McPhail
,
S. J.
,
Woudstra
,
N.
, and
Hemmes
,
K.
, 2003, “
The Influence of Operating Temperature on the Efficiency of a Combined Heat and Power Fuel Cell Plant
,”
J. Power Sources
0378-7753,
122
, pp.
37
46
.
17.
Kivisaari
,
T.
,
Bjornbom
,
P.
,
Sylwan
,
C.
,
Jacquinot
,
B.
,
Jansen
,
D.
, and
de Groot
,
A.
, 2004, “
The Feasibility of a Coal Gasifier Combined With a High-Temperature Fuel Cell
,”
Chem. Eng. J.
0300-9467,
100
, pp.
167
180
.
18.
Yoshiba
,
F.
,
Izaki
,
Y.
, and
Watanabe
,
T.
, 2004, “
System Calculation of Integrated Coal Gasification/Molten Carbonate Fuel Cell Combined Cycle: Reflection of Electricity Generating Performances of Practical Cell
,”
J. Power Sources
0378-7753,
132
, pp.
52
58
.
19.
Donolo
,
G.
,
De Simon
,
G.
, and
Fermeglia
,
M.
, 2006, “
Steady State Simulation of Energy Production From Biomass by Molten Carbonate Fuel Cells
,”
J. Power Sources
0378-7753,
158
, pp.
1282
1289
.
20.
Lobachyov
,
K. V.
, and
Richter
,
H. J.
, 1998, “
An Advanced Integrated Biomass Gasification and Molten Fuel Cell Power System
,”
Energy Convers. Manage.
0196-8904,
39
, pp.
1931
1943
.
21.
Roberts
,
R. A.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R. S.
, 2004, “
Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,” ASME Paper No. GT2004-53653.
22.
Roberts
,
R. A.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R. S.
, 2005, “
Development of Controls for Dynamic Operation of Carbonate Fuel Cell Gas Turbine Hybrid Systems
,” ASME Paper No. GT2005-68774.
23.
Yuh
,
C. Y.
, and
Selman
,
J. R.
, 1991, “
The Polarization of Molten Carbonate Fuel Cell Electrodes: I. Analysis of Steady State Polarization Data
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
3642
3648
.
24.
Wang
,
L.
,
Zhang
,
H.
, and
Weng
,
S.
, 2007, “
Modeling and Simulation of Solid Oxide Fuel Cell Based on the Volume-Resistance Characteristic Modeling Technique
,”
J. Power Sources
0378-7753,
177
(
2
), pp.
579
589
.
25.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
3rd ed.
,
McGraw-Hill
,
New York
.
26.
Rosehnow
,
W. M.
, 1985,
Handbook of Heat Transfer Applications
,
2nd ed.
,
McGraw-Hill
,
New York
.
27.
2000,
The Standards of the Brazed Aluminum Plate-Fin Heat Exchanger Manufactures’ Association
,
2nd ed.
,
ALPEMA
,
London, UK
.
28.
Picón-Núñez
,
M.
,
Polley
,
G. T.
, and
Medina-Flores
,
M.
, 2002, “
Thermal Design of Multi-Stream Heat Exchangers
,”
Appl. Therm. Eng.
1359-4311,
22
, pp.
1643
660
.
29.
Zhang
,
H.
,
Weng
,
S.
, and
Su
,
M.
, 2005, “
Dynamic Modeling and Simulation of Distributed Parameter Heat Exchanger
,” ASME Paper No. 2005-68293.
30.
Stiller
,
C.
, 2006, “
Design, Operation and Control Modeling of SOFC/GT Hybrid Systems
,” Ph.D. thesis, Norges teknisk-naturvitenskapelige universitet, Trondheim, Norway.
31.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2003, “
Multi-Level Modeling of SOFC-Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
889
900
.
You do not currently have access to this content.