Solid oxide fuel cells (SOFCs) have the highest energy conversion efficiency among various power generators and expected to be earlier commercialization. Our study aims to develop fabrication techniques of microtubular SOFC bundles and establish realistic bundle structure for kilowatt class module. So far, we have succeeded to establish fabrication technology of the microtubular SOFC bundles using porous supporting matrices. In this study, the simulation study of the microtubular SOFC bundle was carried out to understand Joule heat and temperature distribution in the microtubular SOFC bundle during operation. The results indicated that the method of current collection had to be carefully considered, since the total output power loss of the bundle was estimated to be 27.8%. The temperature distribution of the bundle using porous MgO matrices turned out to be moderate compared with that in the previous bundle using porous (La,Sr)(Co,Fe)O3 matrices due to the difference in the thermal conductivity of each matrix constitute.

1.
Yamamoto
,
O.
, 2000, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
0013-4686,
45
(
15–16
), pp.
2423
2435
.
2.
Singhal
,
S. C.
, 2002, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
0167-2738,
152–153
, pp.
405
410
.
3.
Sumi
,
H.
,
Ukai
,
K.
,
Mizutani
,
Y.
,
Mori
,
H.
,
Wen
,
C. -J.
,
Takahashi
,
H.
, and
Yamamoto
,
O.
, 2004, “
Performance of Nickel-Scandia-Stabilized Zirconia Cermet Anodes for SOFCs in 3% H2O–CH4
,”
Solid State Ionics
0167-2738,
174
(
1–4
), pp.
151
156
.
4.
Matsui
,
T.
,
Iida
,
T.
,
Kawano
,
M.
,
Inagaki
,
T.
,
Kikuchi
,
R.
, and
Eguchi
,
K.
, 2007, “
Behavior of Carbon Deposition on Fuel Electrode and Subsequent Deterioration of Cell Performance During Internal Reforming Operation of SOFCs
,”
ECS Trans.
1938-5862,
7
(
1
), pp.
1437
1445
.
5.
Sasaki
,
K.
,
Susuki
,
K.
,
Iyoshi
,
A.
,
Uchimura
,
M.
,
Imamura
,
N.
,
Kusada
,
H.
,
Teraoka
,
Y.
,
Fuchino
,
H.
,
Tsujimoto
,
K.
,
Uchida
,
Y.
, and
Jingo
,
N.
, 2006, “
H2S Poisoning of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
(
11
), pp.
A2023
A2029
.
6.
Mizutani
,
Y.
,
Hisada
,
K.
,
Ukai
,
K.
,
Sumi
,
H.
,
Yokoyama
,
M.
,
Nakamura
,
Y.
, and
Yamamoto
,
O.
, 2006, “
From Rare Earth Doped Zirconia to 1kW Solid Oxide Fuel Cell System
,”
J. Alloys Compd.
0925-8388,
408–412
, pp.
518
524
.
7.
Inagaki
,
T.
,
Nishiwaki
,
F.
,
Yamasaki
,
S.
,
Akbay
,
T.
, and
Hosoi
,
K.
, 2008, “
Intermediate Temperature Solid Oxide Fuel Cell Based on Lanthanum Gallate Electrolyte
,”
J. Power Sources
0378-7753,
181
(
2
), pp.
274
280
.
8.
Waldbillig
,
D.
,
Wood
,
A.
, and
Ivey
,
D. G.
, 2005, “
Thermal Analysis of the Cyclic Reduction and Oxidation Behaviour of SOFC Anodes
,”
Solid State Ionics
0167-2738,
176
(
9–10
), pp.
847
859
.
9.
Hagen
,
A.
,
Liu
,
Y. L.
,
Barfod
,
R.
, and
Hendriksen
,
P. V.
, 2008, “
Assessment of the Cathode Contribution to the Degradation of Anode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
155
(
10
), pp.
B1047
B1052
.
10.
Eguchi
,
K.
,
Kunisa
,
Y.
,
Adachi
,
K.
, and
Arai
,
H.
, 1996, “
Effect of Anodic Concentration Overvoltage on Power Generation Characteristics of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
(
11
), pp.
3699
3703
.
11.
Steele
,
B. C. H.
, 2000, “
Appraisal of Ce1−yGdyO2−y/2 Electrolytes for IT-SOFC Operation at 500°C
,”
Solid State Ionics
0167-2738,
129
(
1–4
), pp.
95
110
.
12.
Otake
,
T.
,
Yagami
,
H.
,
Yashiro
,
K.
,
Nigara
,
Y.
,
Kawada
,
T.
, and
Mizusaki
,
J.
, 2003, “
Nonstoichiometry of Ce1−xYxO2−0.5x−δ (X=0.1,0.2), 0.2)
,”
Solid State Ionics
0167-2738,
161
(
1–2
), pp.
181
186
.
13.
Ishihara
,
T.
,
Kilner
,
J. A.
,
Honda
,
M.
,
Sakai
,
N.
,
Yokokawa
,
H.
, and
Takita
,
Y.
, 1998, “
Oxygen Surface Exchange and Diffusion in LaGaO3 Based Perovskite Type Oxides
,”
Solid State Ionics
0167-2738,
113–115
, pp.
593
600
.
14.
Ishihara
,
T.
,
Yan
,
J.
,
Shinagawa
,
M.
, and
Matsumoto
,
H.
, 2006, “
Ni–Fe Bimetallic Anode as an Active Anode for Intermediate Temperature SOFC Using LaGaO3 Based Electrolyte Film
,”
Electrochim. Acta
0013-4686,
52
(
4
), pp.
1645
1650
.
15.
Hatchwell
,
C.
,
Sammes
,
N. M.
, and
Brown
,
I. W. M.
, 1999, “
Fabrication and Properties of Ce0.8Gd0.2O1.9 Electrolyte-Based Tubular Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
126
(
3–4
), pp.
201
208
.
16.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
, 2005, “
Design and Fabrication of a 100W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
428
434
.
17.
Lockett
,
M.
,
Simmons
,
M. J. H.
, and
Kendall
,
K.
, 2004, “
CFD to Predict Temperature Profile for Scale Up of Micro-Tubular SOFC Stacks
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
243
246
.
18.
Van herle
,
J.
,
Ihringer
,
R.
,
Sammes
,
N. M.
,
Tompsett
,
G.
,
Kendall
,
K.
,
Yamada
,
K.
,
Wen
,
C.
,
Kawada
,
T.
,
Ihara
,
M.
, and
Mizusaki
,
J.
, 2000, “
Concept and Technology of SOFC for Electric Vehicles
,”
Solid State Ionics
0167-2738,
132
(
3
), pp.
333
342
.
19.
Villarreal
,
I.
,
Jacobson
,
C.
,
Leming
,
A.
,
Matus
,
Y.
,
Visco
,
S.
, and
De Jonghe
,
L.
, 2003, “
Metal-Supported Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
6
(
9
), pp.
A178
A179
.
20.
Matus
,
Y. B.
,
De Jonghe
,
L. C.
,
Jacobson
,
C. P.
, and
Visco
,
S. J.
, 2005, “
Metal-Supported Solid Oxide Fuel Cell Membranes for Rapid Thermal Cycling
,”
Solid State Ionics
0167-2738,
176
(
5–6
), pp.
443
449
.
21.
Bujalski
,
W.
,
Dikwal
,
C. M.
, and
Kendall
,
K.
, 2007, “
Cycling of Three Solid Oxide Fuel Cell Types
,”
J. Power Sources
0378-7753,
171
(
1
), pp.
96
100
.
22.
Kendall
,
K.
,
Dikwal
,
C. M.
, and
Bujalski
,
W.
, 2007, “
Comparative Analysis of Thermal and Redox Cycling for Microtubular SOFCs
,”
ECS Trans.
1938-5862,
7
(
1
), pp.
1521
1526
.
23.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Fabrication and Characterization of Components for Cube Shaped Micro Tubular SOFC Bundle
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
731
736
.
24.
Funahashi
,
Y.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
,
Nagai
,
K.
,
Otake
,
T.
,
Shimamori
,
T.
, and
Awano
,
M.
, 2007, “
Fabrication and Characterization of the Cubic SOFC Bundles With Micro Tubular Cells
,”
Proceedings of the 2007 Fuel Cell Seminar and Exposition
,
D.
Rastler
and
M.
Hicks
, eds., San Antonio, TX, pp.
223
226
.
25.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Microstructure Control of Cathode Matrices for the Cube-Type SOFC Bundles
,”
Ceram. Eng. Sci. Proc.
0196-6219,
28
(
4
), pp.
195
202
.
26.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2010, “
Simulation Study for the Optimization of Microtubular Solid Oxide Fuel Cell Bundles
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
7
(
2
), p.
021015
.
27.
Touloukian
,
Y. S.
, 1970, “
Thermal Conductivity: Metallic Elements and Alloys
,”
Thermophysical Properties of Matter (The TPRC Data Series; A Comprehensive Compilation of Data)
, Vol.
1
,
IFI/Plenum
,
New York
, p.
340
.
28.
1975,
Japan Society of Mechanical Engineers Data Book
, Vol.
3
,
Heat Transfer Engineering
,
Maruzen
,
Tokyo
, p.
300
.
29.
Tagawa
,
H.
, 1998,
Solid Oxide Fuel Cells and Earth Environment
,
Agune-shofusha
,
Tokyo
, p.
35
.
30.
1986,
Japan Society of Mechanical Engineers Data Book
, Vol.
4
,
Heat Transfer Engineering
,
Maruzen
,
Tokyo
, p.
329
.
31.
Holman
,
J. P.
, 1976,
Heat Transfer
,
4th ed.
,
McGraw-Hill
,
New York
, Chap. 6.
32.
Holman
,
J. P.
, 1976,
Heat Transfer
,
4th ed.
,
McGraw-Hill
,
New York
, Chap. 4.
You do not currently have access to this content.